JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for TUP19: First Tests of Model-Based Linac Phasing in ISAC-II

@inproceedings{kiy:hiat2022-tup19,
  author       = {S. Kiy and R.A. Baartman and O.K. Kester and O. Shelbaya},
  title        = {{First Tests of Model-Based Linac Phasing in ISAC-II}},
  booktitle    = {Proc. HIAT'22},
% booktitle    = {Proc. 15th International Conference on Heavy Ion Accelerator Technology (HIAT'22)},
  pages        = {113--117},
  eid          = {TUP19},
  language     = {english},
  keywords     = {cavity, linac, ISAC, controls, solenoid},
  venue        = {Darmstadt, Germany},
  series       = {International Conference on Heavy Ion Accelerator Technology},
  number       = {15},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {08},
  year         = {2022},
  issn         = {2673-5547},
  isbn         = {978-3-95450-240-0},
  doi          = {10.18429/JACoW-HIAT2022-TUP19},
  url          = {https://jacow.org/hiat2022/papers/tup19.pdf},
  abstract     = {{As the e-linac and ARIEL facilities at TRIUMF progress, the impending complexity of operating three simultaneous rare ion beams (RIBs) approaches. To help prepare for this, a framework for the development of High Level Applications has been constucted, upon which multiple avenues for improvement towards model-based and automated tuning are being pursued. Along one of these avenues, the 40-cavity superconducting ISAC-II heavy ion linac has been studied and modelled in the envelope code transoptr. This has allowed for real-time integration through the on-axis fields, fitting focal strengths of solenoids to achieve desired beam waists, and calculation of necessary cavity phases to achieve a desired output energy for given input beam parameters. Initial tests have been completed, successfully phasing up to 37 cavities using the transoptr model and achieving a final output energy within 1% of the expected while maintaining nominal (>90%) transmission. A summary of the calibration of the model to the machine is given, followed by results of the phasing tests and an outlook towards future improvements.}},
}