STATUS AND PERSPECTIVE OF ELECTRON CYCLOTRON RESONANCE CHARGE BREEDERS

J. Angot T. Thuillier M. Baylac M. Migliore O. Tarvainen

Outline

- Introduction
- Beam Purity issue
- Developments
- Performances
- Future prospects
- Conclusion

Introduction

Principle of the Isotope Separation On Line method

Introduction

14.5 GHz 500W

Injection, capture, multi ionisation, extraction

HIAT 2022 Darmstadt – June 27, 2022

27, 2022

ANL AECR 10 – 14GHz

TRIUMF PHOENIX 14GHz

TEXAS A&M 14GHz

GANIL PHOENIX 14GHz

KEK KEK CB 18GHz

LNL PHOENIX 14GHz

LPSC PHOENIX 14GHz

Introduction

Lab Facility	Prim. beam	Reaction Ionisation source	Charge Breeder I+ (pps)	Post accel. Energy	
ANL CARIBU		²⁵² Cf fission fragments He gas catcher	ECRIS \rightarrow EBIS	SC LINAC 10 MeV/u	
CERN ISOLDE	1.4 GeV p ⁺	Spallation, fragmentation, fission Surface, laser, plasma, LIST	EBIS 10 ⁷	LINAC + SC LINAC 10.4 MeV/u at A/q=2.5	
GANIL SPIRAL1	95 MeV/u C 24 MeV/u U	Fragmetation, fusion evaporation ECR, Febiad	ECRIS 10^2 to 5×10^8	Cyclotron Up to 25 MeV/u	
LNL SPES	30-70 MeV 1.5 mA H ⁺	UCx target fragmentation	ECRIS 10 ⁶	RFQ, SC LINAC Up to 10 MeV/u for A/q=7	
MSU ReA	80 MeV/u	Projectile fragmentation He gas catcher	EBIT CW 10 ¹⁰	RFQ, SC LINAC 20 MeV/u light, 12 MeV/u heavy	
Texas A&M	80 MeV H ⁺	(p,n) reactions He gas cell	ECRIS	Cyclotron 26-57 MeV/u	
TRIUMF ISAC	500 MeV H ⁺	Spallation, fragmentation Surface, laser, plasma	ECRIS+EBIS 10^5 to 10^9	RFQ, LINAC, SC LINAC 0.15-9.5 MeV/u	
IBS RAON	70 MeV p ⁺	UCx target fragmentation	EBIS Up to 10 ⁹	SC LINAC 20 MeV/u	

Beam purity issue

Thuillier, ECRIS 2018 workshop

HIAT 2022 Darmstadt – June 27, 2022

Beam purity issue

> **Signal** to **noise** ratio is a key parameter for ECRIS CB at low RIB intensity:

	Signal (pps)	10 ³	104	10 ⁵	10 ⁶	107
For $\frac{M}{4M} \sim 300$	Signal/Noise	0.01	0.1	1	10	100
	N+ RIB fraction	0.9%	9%	50%	91%	99%
For $\frac{M}{4M} \sim 6000$	Signal/Noise	1	10	100	1000	10000
	N+ RIB fraction	50%	91%	99%	99.9%	99.99%

HIAT 2022 Darmstadt – June 27, 2022

ANL

Thuillier, ECRIS 2018 workshop 8

Beam purity issue : Electron Beam Ion Sources

- Operate in pulse mode to reach high efficiency
- The charged particules have low interactions with the walls, base vacuum $\approx 10^{-11}$ mbar \rightarrow high beam purity
- A cooler-buncher is necessary to prepare the beam for injection
- Total efficiency of the cooler-buncher + EBIS : 5 to 20%
- CB time of cooler-buncher + EBIS : 10 to 100 ms

Main limitation

• Limited 1+ beam flux (<10¹⁰ pps) due to the max. number of charges stored into the cooler buncher or into the EBIS

ECR Charge Breeder developments

Developments to improve ECR CB purity :

Use of NEG material Plasma chamber coating with pure Al Vacuum improvement Cleaning technics

Extensive developments by the laboratories to improve ECR CB performances : 1+ beam injection Injection electrode geometry / position Magnetic field at injection symmetrized to prevent steering

Plasma conditions

Increase the injection magnetic field (better confinement) Microwave double frequency heating And frequency tuning

HIAT 2022 Darmstadt – June 27, 2022

KEK, RSI 79,02A906(2008)

FIG. 3. Impurities originating from the KEKCB. The A/q=7.68 ratio is defined by the slit and the analyzing magnet. (a) The mass spectrum obtained before cleaning of the plasma chamber and electrodes. (b) The mass spectrum obtained after cleaning. TM stands for transition metals. Mo and Kr indicates molybdenum and krypton ions.

TRIUMF, ICIS 2021 poster

Fig. 7: Efficiency of Cs with Single and Two-frequency Heating 10

ECR Charge Breeder developments : 1+ beam capture experiments

$$|\Delta V|_{opt} = \frac{4m_{1+}}{\pi m_i} \frac{kT_i}{e} + \mathbf{\emptyset}$$

Measurements : $\emptyset \approx 10V$ and kT_i = 5 to 28 eV Not in good agreement with the theory Experiments to test the mass dependency of the stopping term

- Main slowing down due to the plasma potential
- Ionisation to 2+ by the plasma electrons
- Influence of the potential dip in the capture

O. Tarvainen et al., submitted in PSST

ECR Charge Breeder performances

LPSC
GRENOBLE MODANE

Laboratory Facility	ANL CARIBU	GANIL SPIRAL1	KEK TRIAC	LNL SPES	LPSC R&D	Texas A&M	TRIUMF ISAC
Source type	AECR	PHOENIX	KEKCB	PHOENIX	PHOENIX		PHOENIX
Freq. (GHz)	10-14	14.5	18	14.5	14.5	14.5	14.5
Chamber Φ (mm)	80	72	75	72	72	90	72
Pressure (mbar)	2.5×10^{-8}	1×10^{-8}		4×10^{-7}	3×10^{-8}	1×10^{-7}	1×10^{-8}
Coils nb	2	3	3	3	3	2	3
B_{inj}/B_{ecr}	3.8	2.9	2.3	2.8	3.1	2.5	2.2
B_{rad}/B_{ecr}	2.3	1.5	1.7	1.5	1.5	2.2	1.5
ϵ_{CB} (%), A ≈ 20	10.1	17.0			18.7		
ϵ_{CB} (%), A ≈ 80		9.5		7.8	11.3		3.0
ϵ_{CB} (%), A ≈ 130	14.1		2.4	11.7	14.1	10.0	4.0
Total eff. (%)	47 - 77	44 - 72		50-65	60 - 90		>35%
$\tau_{CB} (ms/q)$	10 - 46	4 - 20		17-28	13 - 26		10 - 20
A/q, A ≈ 20	3.3	3.3			2.9		5.5
A/q, A ≈ 130	5.1	4.5	7.0	5.1	5.1	5.5	6.3
Separation $\Delta m/m$	300	10000		1000	140		250

- Different CB configurations
- Different facility configurations
- Efficiency : 5 to 20%
- Total efficiency : 35 to 90%
- CB time : 10 28 ms/q

ECR CB offer high 1+ beam acceptance > 10¹³ pps with a constant contamination yield

High RIB fluxes are expected in future ISOL facilies like FRIB (>10¹⁰pps in some cases, under commissionning) or EURISOL (10¹² pps)

At FRIB a High Capacity EBIS is under development, should accept 10¹¹ pps for low mass A≈20 (H.J. Son, NACB 2021)

HIAT 2022 Darmstadt – June 27, 2022

Possible improvement of ECR Charge Breeding technics :

- Increase microwave frequency : increase electron density → better capture, shorter CB time, higher charge state
- Large plasma chamber radius → decrease the density of contaminants, higher charge state
- Increase magnetic field at injection → better trapping of the ions

ECR Charge Breeder prospects : beam purity

All the sources of contamination must be addressed:

- Use of pure material in front of the plasma
- Follow ANL steps to get rid of gas contamination (He or H_2 as support gas)

ECR Charge Breeder prospects R&D program at LPSC on PHOENIX type CB

5 coils configuration : ease the tuning and stabilize the plasma

- Improve the axial magnetic field profile
- Decrease the cross talk between the coils

Beam purity improvement (LNL LPSC GANIL collaboration)

- Experiments will be done with liners
- Support gas decontamination

Assembly in September 2022

ECR Charge Breeder prospects

R&D program at LPSC on PHOENIX type CB

Large diameter configuration:

- increase high charge state production
- Decrease the density of contaminants

- Plasma chamber diameter : 72 → 100 mm
- Larger hexapole
- sealing exclusively with metal gaskets
- 18GHz operation, two frequency heating

ECR Charge Breeder prospects

New concept of superconducting Charge Breeder

+20% efficiency, -40% CB Time, drastic reduction of contaminants

HIAT 2022 Darmstadt – June 27, 2022

Thuillier, ECRIS 2018 workshop

Conclusion

- ECR Charge Breeders are efficient instruments that accept a very high 1+ beam flux which could be of high interest for future ISOL facilities with high production yield
- The beam purity issue can be addressed with high downstream separation and additional R&D must be carried out to reduce the contaminants
- ECR Charge Breeding technics can be improved and solutions are identified to enhance the performances through a new generation of source

Thank you for your attention