Radioactive Ion Beams at TRIUMF: Status and Perspectives

Friedhelm Ames

HIAT2022, June 27, 2022

outline

- Introduction
- rare isotopes production at ISAC
- rare isotope accelerated beams
- new opportunities with ARIEL and CANREB

celerat SCOVE ac

∂TRIUMF

Rare Isotope production with proton beam driver

scover celerat

Ŭ

Isotope Separation On-Line (ISOL)

Discovery, accelerated

5

∂ TRIUMF

ISAC target assembly

high power

up to 100 μ A

ISAC target station

7

Φ

∂TRIUMF

Target materials

	Material	LP SIS	LP FEBIAD	HP SIS	HP FEBIAD	ECRIS	LP IGLIS	total
	Al ₂ O ₃				1			1
	SiC	14		10	11	1	2	38
	CaO	2						2
	CaZrO	1				1		2
	TiC	3			1			4
	NiO				2			2
	Nb	5		4				9
	Nb ₅ SiC ₃	1						1
	ZrC	5		1	2			8
	Та	35		27		1		63
	TaC	1						1
	UO	1	2					3
	UCx	26			1		6	33
	Ucx(p2n)			2				2
2022-	С			3				3

8

ISAC targets 1998-2021

Total 173

~10 targets/year

isotopes produced at ISAC

ISAC Yield Chart

for more details, please check <u>https://yield.targets.triumf.ca/search/yield/data</u>

P. Kunz

RIUMF

Proton to neutron (p2n) converter target

- produce comparable n-rich isotopes to standard UC_x ISAC targets
- suppress the n-deficient isobaric contamination by x10 or more
- exploit the full proton beam intensity from the TRIUMF cyclotron

10

era

Results from two p2n targets

- ✓ Elements extracted: Rb, Cs, Sn, Zn, Ga, Na, Fr, Ra
- ✓ Max proton intensity on P2N: 80 μ A → yields shown normalized *per* μ A of protons
- ✓ Yields linearly proportional to proton beam intensity
- \checkmark Higher purity: p-rich from the same chain reduced by **5x 50x** with respect to previous ISAC-UCx targets

L. Egoriti

*****TRIUMF

post acceleration

12

era

- **RFQ**: (radiofrequency quadrupole accelerator) acceptance : A/q < 30 @ 2.04 keV/u final energy: 150 keV/u
- DTL: (drift tube linear accelerator) acceptance A/q <7 final energy 1.5 MeV/u
- superconducting LINAC: acceptance A/q <7 final energy 15 MeV/u for A/q=3

A/q < 30 injection of 1+ ions, stripping after RFQ A/q > 30 charge state breeding to A/q < 7stripping after DTL for higher energy or purification

2022-06-26

REALE

charge state breeding

charge state breeding with an ECR ion source 14.5 GHz PHOENIX from Pantechnik

• continuous beam

% TRIUMF

charge state breeding results

efficiency and charge state distribution

radioactive ions from on-line ion source total efficiency >17% stable ions from off-line and on-line ion source total efficiency 35%

charge state breeding results

maximum of charge state distribution for Na to U

A/Q requirements can be fulfilled for elements with $Z \sim < 60-70$

ECRIS background

background from residual gas and plasma chamber materials

Material has been changed from stainless steel to aluminum

background reduction

using LINAC chain as mass filter (M/ Δ M \approx 1000) additional stripping at 1.5 MeV/u to ⁹⁴Rb²²⁺

laser ionized ⁹⁴Sr: Sr:Rb = 3:1 charge bred to ⁹⁴Sr¹⁵⁺ $1\cdot 10^7$ ions/s (~1.5%)

accelerated and delivered to TIGRESS experiment

Particle ID from ΔE-E after acceleration

(M. Marchetto et al. proceedings LINAC2012, JACoW.org)

software tools for set-up

Beam Companion Explorer

example ⁹⁴Sr

Discovery, accelerated

software tools for set-up

celerated Discovery ac

С

software tools for set-up

Available Charge States:

Click to generate plots & companion lists.

20

a C D i

Summary ISAC :

- More than 20 years radioactive beam delivery
- More than 800 isotopes
- Post-acceleration up to 15 MeV/u
- ECR charge state breeder at ISAC operational since 2008
 - isotopes from more than 15 elements have been charge bred so far
 - range of ions charge bred for acceleration: ²¹Na ¹⁶⁰Er
 - efficiency 1-5%
 - problems:
 - high background
 - long breeding time (~20 ms*q)
 - Ongoing improvements to ECR charge breeder:
 - implementing 2 frequency heating and improving injection/ extraction optics
 - \rightarrow higher efficiency, higher charge states, more stable operation

New opportunities with ARIEL and CANREB

Advanced RarE Isotope Laboratory CANadian Rare isotope facility with Electron Beam ion source

- One additional target 30 MeV using (100 kW) and photo fission
- One additional target using 500 MeV protons similar like ISAC
- High resolution mass separation $M/\Delta M = 20\ 000$
- Charge state breeding with an EBIS

ARIEL electron target design

Discovery, accelerateo

CANREB overview

RIUMF

- Generally orders of magnitude less than typical background from ECRIS
- Exception: A/q = 4 (He⁺) \rightarrow Increased by gas diffusion from RFQ

B. Schultz

Charge state distribution for Rb ions

B. Schultz

ISAC beam delivery

- Target/ion source downtime
- ISAC facility downtime
- Cyclotron downtime
- Tuning procedures
- RIB on Standby (SIB in use)
- RIB development

RIB delivered to experiments

Year

Typical duration of one experiment 2 days to 3 weeks

~8 months per year since 2018 reduced schedule for ARIEL installations and COVID

Future operation

ISAC + ARIEL beam delivery

- Total hours to users: 9000 per year
- 3 simultaneous beams
 - 2 to low energy experiments
 - 1 accelerated beam
- Fixed duration for one target (3 weeks)
- Reduce overhead for beam tuning by implementing high level applications using ion optics model-based tuning, scaling and accelerator phasing → Spencer Kiy, presentation Tuesday, 11:50 poster Tuesday, 16:00

∂ TRIUMF

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab

Discovery, accelerated