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OUTLINE

üATLAS AI/ML Project 
• Brief Description
• Main Objectives & Approach

ü Progress
• Data Collection
• Bayesian Optimization with Gaussian Processes to support online tuning
• Deep Reinforcement Learning to support online tuning
• Surrogate models for speeding simulations

üConclusions and Next Steps
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ARGONNE TANDEM LINEAR ACCELERATOR SYSTEM
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ü1st Superconducting heavy-ion linac in the world
üIt has been operating for over 35 years
üNational user facility serving ~ 400 users per year
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THE ATLAS AI / ML PROJECT
Use of artificial intelligence to optimize accelerator operations and 
improve machine performance 

üSurrogate Models
üVirtual Diagnostics
üTuning Control Model
ü…



THE ATLAS AI / ML PROJECT 

ü At ATLAS, ion beam species are switched every 3-4 days … à Using
AI could streamline beam tuning & help improve machine performance

ü The main project goals are:
• Data collection, organization and classification, towards a fully automatic

and electronic data collection for both machine and beam data
• Online tuning model to optimize operations and shorten beam tuning

time in order to make more beam time available for the experimental
program

• Virtual model to enhance our understanding of the machine behavior in order
to improve performance and optimize particular and new operating modes

Use of artificial intelligence to optimize accelerator operations 
and improve machine performance 
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Project Started in 2021



ATLAS – FIRST STEPS IN DATA COLLECTION

ü Kind of data?
ü How much data?
ü Accessible?
ü Automated?

~80% time of a Data Scientist is Collecting Data, Cleaning and 
Organizing Data
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ATLAS - DATA AT ATLAS
~80% time of a Data Scientist is Collecting Data, Cleaning and 
Organizing Data
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ATLAS sub-section



~80% time of a Data Scientist is Collecting Data, Cleaning and 
Organizing Data
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ATLAS - DATA AT ATLAS

Faraday Cups 
Currents

Beam Profiles Voltages/
Currents



ATLAS - DATA AT ATLAS
~80% time of a Data Scientist is Collecting Data, Cleaning and 
Organizing Data

9

Pepper Pot Images

Faraday Cups 
Currents

Beam Profiles
Voltages/
Currents



ATLAS - DATA AT ATLAS
~80% time of a Data Scientist is Collecting Data, Cleaning and 
Organizing Data
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Faraday Cups 
Currents

Beam Profiles
Voltages/
Currents

Pepper Pot Images

ü Only settings could be saved automatically using the Control System 
(vsystem)

ü Faraday Cups and Beam Profile Monitor in Control System but not 
automated



ATLAS - DATA COLLECTION NOW
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Control System

Python

ATLAS

DATA COLLECTION & ACCESS TO CONTROL SYSTEM
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BPM: 
digitized, 
read

Elements: 
read/set

FC: digitized, insert, read

*Pepper pot setup in progress

SERVER



ATLAS - DATA COLLECTION
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SIMULATION - DATA COLLECTION
ü Python wrapper for TRACK (Simulation Code)
ü Generation of data easily
ü Different conditions and inputs
ü Integration with modeling

Python Wrapper

TRACK
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ü Develop a baseline model to tune/control a small section of ATLAS Linac using
Simulation Data (from TRACK simulation code)

ü Followed Approaches: Bayesian Optimization with Gaussian Processes and
Deep Reinforcement Learning

ü Test models on real machine
ü Improve models
ü Expand to other parts of the Linac

TUNING/CONTROL OF ATLAS
Online tuning model to optimize operations and shorten beam tuning 
time 
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ü Develop a baseline model to tune/control a small section of ATLAS Linac using
Simulation Data (from TRACK simulation code)

ü Followed Approaches: Bayesian Optimization with Gaussian Processes and
Deep Reinforcement Learning

ü Test models on real machine
ü Improve models
ü Expand to other parts of the Linac

TUNING/CONTROL OF ATLAS
Online tuning model to optimize operations and shorten beam tuning 
time 
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§ Model-based Bayesian optimization combines the complementary strengths 
of human and numerical optimization. 
– Life-long learning, learns by experience / Juggle many things at once, Fast 

decisions + estimate of their own uncertainty + global optimum in a minimum 
number of steps.

§ Bayesian optimization incorporates prior belief about f(x) and updates the prior 
with samples drawn from f(x) to get a posterior that better approximates f(x)

BAYESIAN OPTIMIZATION 



§ Probabilistic surrogate model for approximating the objective function. 
– Gaussian Process (GP): give a reliable estimate of their own uncertainty and 

shape our prior belief via the choice of kernel.
§ Acquisition function that tells where to query the system next for a more likely 

improvement

BAYESIAN OPTIMIZATION 
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– Non-parametric approach: learning model and hyperparameters from data.
– It finds a distribution over the possible functions f(x) that are consistent with 

the observed data 
– Begins with a prior distribution, which can be converted into a posterior over 

functions by observing more data Bayes’ rule. 
– Example using a Gaussian Kernel and assuming a mean of 0 for prior:

GAUSSIAN PROCESS
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BAYESIAN OPTIMIZATION WITH GP  
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No RFQ

Random Initial Data

BO WITH SIMULATION DATA CASES
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No RFQ

BO WITH SIMULATION DATA CASES

Random Initial Data
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No RFQ

RFQ

Random Initial Data Historical Initial Data

BO WITH SIMULATION DATA CASES

Prior knowledge/conditions 
helps a lot
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- Bayesian Optimization with Gaussian Processes
- Transmission = f(9D-configuration)
- Quadrupoles limited based on historical data
- Surrogate Model: Gaussian Process with Matern

Kernel and Gaussian likelihood.
- Acquisition function: Expected Improvement
- GPyTorch + BoTorch
- TRACK simulating the real machine.

BO WITH SIMULATION DATA – RFQ AND 
HISTORICAL INITIAL DATA CASE



BO WITH GP - ATLAS
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2xSteerers

14N3+

40Ar9+

ü 7 input parameters (3 
quadrupoles + 2 steerers)

üOptimization of the 
transmission

üCase of 14N3+:
ü 29 historical tuned 

beams + 33 random 
configurations.

üCase 40Ar9+:
ü 29 historical tuned 

beams
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REINFORCEMENT LEARNING
üReinforcement learning is learning what to do - how to map situations to 

actions in order to maximize a numerical reward. 
üClassic Control

üParticle Accelerators are among the most complex machines

üGoal:
üWhat does this function look like?
üHow do you design it?
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REINFORCEMENT LEARNING
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REINFORCEMENT LEARNING



REINFORCEMENT LEARNING
Actor-Critic

Deep Deterministic Policy Gradient (DDPG)
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DDPG – 3 QUADRUPOLE AND BEAM SIZE –
SIMULATION DATA

Prediction

Training

ü Electrostatic Quadrupoles:
• 2 kV to 10 kV
• Max action +- 0.25 kV
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Training

DDPG – 4 QUADRUPOLE + 2 MAGNETS
AND TRANSMISSION – REAL DATA

ü Electrostatic Quadrupoles :
• 3 kV to 10 kV
• Max action +- 0.25 kV

ü Steering Magnets:
• -1 A to 1 A
• Max action +- 0.25 A

*In progress
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DDPG – 3 QUADRUPOLE CASE + RFQ AND 
TRANSMISSION

üLong simulation times because of RFQ.
ü104 particles -> +45 seconds per 
simulation.
üRL requires a lot of iterations.

Offline training and online fine tune



SURROGATE MODEL
ü Physics Simulation Codes → nonlinear/collective effects/3D fields + slow

• Impedes:
oStart-to-end optimization
oUse as an online model / virtual diagnostic
oUse in control

• Cannot always replicate the real machine behavior 
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SURROGATE MODEL
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ü Faster Codes:
• Simpler (↓ Accuracy)
• Parallelization
• Faster Algorithms

ü ML surrogate model
• Once trained, fast execution
• Be able to optimize multiple objectives
• Fulfill multiple constraints
• Be fast and accurate enough
• Handle noise
• Learn  from past experiments and 

simulations

ü Physics Simulation Codes → nonlinear/collective effects/3D fields + slow
• Impedes:

oStart-to-end optimization
oUse as an online model / virtual diagnostic
oUse in control

• Cannot always replicate the real machine behavior 



SURROGATE MODEL
üML Surrogate Model can be used for virtual diagnostics, offline experiment 

planning, design of new setups, control and tuning. 
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SURROGATE MODEL
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o A. Edelen et al 2019: Multi-objective optimization using surrogate model based 
on neural networks → beam parameters = f(settings)

~ O(106) - O(107) more efficient to execute
o Lipi Gupta et al 2021: surrogate model to predict scalar beam parameters and 

the transverse beam distribution downstream for the LCLS-II injector taking into 
account the impact of time-varying non-uniformities in the initial transverse 
distribution ~ MAPE <= 9%

üML Surrogate Model can be used for virtual diagnostics, offline experiment 
planning, design of new setups, control and tuning. 



EXPLORING ML SURROGATE MODELS 
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ü Preliminary studies
ü Radio-frequency quadrupole (RFQ)
ü Data from TRACK simulations
ü Neural network architectures
ü TensorFlow



SURROGATE MODELS FOR BEAM TRANSPORT

ü Data generated using TRACK 3D simulations, 7000 x 104 particles each, with
different transverse emittances, phase width and energy spread.

ü Excellent agreement with TRACK 3D beam simulations
ü Much faster than TRACK, speed-up factor ~ 30,000.
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SURROGATE MODELS FOR BEAM TRANSPORT

ü Data generated using TRACK 3D simulations, 7000 x 104 particles each, with
different transverse emittances, phase width and energy spread.

ü Excellent agreement with TRACK 3D beam simulations
ü Much faster than TRACK, speed-up factor ~ 30,000.
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Horizontal
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Size

Vertical
Size

Transmission
Rate

Goal: Predict acceptance + Twiss parameters based on input distribution

Next Step: Use RFQ surrogate model in RL for offline training



BO VS RL
Analogous concepts, different terminology and usually different 
settings.

Objective → Reward
Surrogate Model → Value Function

Acquisition Function → Policy
Acquire new sample → Take an Action

ü BO and RL both are useful for high-level tuning and control but excel in 
different regimes.
ü BO: exploratory/optimization new setups + low data regime/slow 

measurements
ü RL: high data regime, continuous control

ü BO would be more suitable for new tuning configurations and RL for 
continuous control after pre-trained offline.



CONCLUSIONS AND NEXT STEPS
üAutomated data collection and integration of new devices as the pepper

pot.
üSuccessfully trained and deploy a BO with GP on real machine for a

subsection of ATLAS.
üIntegration of RL model with the real machine (preliminary results).
üNext Steps

• Test Pepper Pot, get more useful data and test RL on machine.
• Improve existing models (other architectures, new type of data (adding beam

profilers or pepper pot images, incorporate more Physics information, use of
surrogate models, etc.).

• TRACK lattice including misalignments.
üCurrent Challenges:

• Possible damage to devices when beam is lost during model training
39
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