

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

3D printing (additive manufacturing) applied to accelerator components

T. Torims, Riga Technical University

On behalf of I.FAST WP10 Task 10.2 partners

HIAT 2022

Additive Manufacturing is a primary shaping process

"Fabrication of a solid body from a shapeless material through cohesion"

... or simply...

"...a process in which 3D bodies are manufactured in a layer-wise fashion"

Lukas Stepien @ I.FAST AM workshop '22

Additive Manufacturing is a primary shaping process

"Fabrication of a solid body from a shapeless material through cohesion"

... or simply...

"...a process in which 3D bodies are manufactured in a layer-wise fashion"

Lukas Stepien @ I.FAST AM workshop '22

Additive Manufacturing is a primary shaping process

"Fabrication of a solid body from a shapeless material through cohesion"

... or simply...

"...a process in which 3D bodies are manufactured in a layer-wise fashion"

Lukas Stepien @ I.FAST AM workshop '22

Additive Manufacturing is a primary shaping process

"Fabrication of a solid body from a shapeless material through cohesion"

... or simply...

"...a process in which 3D bodies are manufactured in a layer-wise fashion"

FAST

State of the art

Laser Powder Bed Fusion

Process

- Due to layer-wise build-up defects can occur (e.g. lack of fusion, keyhole, gas porosity)
- Density up to 99.99 %
- Process leads to a fine crystalline microstructure
- Microstructure is often anisotropic (to build direction)
- Productivity ~ 20 170 cm³/ h (multiple Laser possible)
- Resolution 20 200 Ra µm
- Surface roughness typically \sim 5-15 μ m

Lukas Stepien @ I.FAST

AM workshop '22

State of the Art

Laser Powder Bed Fusion

Materials

Spherical powder with good flowability needed

•Powder size distribution $D_{10} = 15 \dots D_{90} = 50$ µm

•Wide range of common validated materials (Ni-base, Ti-base, Al-base, Fe-base, stainless steel, magnetic, refractory material, ...)

Composites (Ceramic-Metal-Composites)
 Fraunhofer

Lukas Stepien @ I.FAST AM workshop '22 7

IWS

Latest trends

Laser Powder Bed Fusion

- Higher productivity through:
 - Multiple lasers
 - Increased laser power > 1 kW
 - Automated powder and part handling within machine
 -> costs >> 1 Mio.€
- Introduction of blue laser sources (65 % absorption, \sim 150 W needed)
- Increase in build-size ~ 1000 x 1000 x 1000 mm³ -> still R&D
- Copper and Copper alloys
- Large parts...

Prof. Toms TORIMS on behalf of I.FAST Task 10.2 for HIAT '22

Lukas Stepien @ I.FAST AM workshop '22 ⁸

AM applications - latest trends

Automotive, medical, mining, maritime, aerospace – e.g. thrusters

© AMAREO / Monash Uni© AMCM

© REM Surface Engineering / NASA © SLM Solutions

© PANGEA / NASA

Supportless printing

Lukas Stepien @ I.FAST AM workshop '22

AM technology solutions

- + From micro to macro
- + Multilaterals
- Economic production of complex parts
- + High material utilization
- + Individualization
- + Optimization and redesign
- + In-situ monitoring
- + Density up to 99.99 %

- Geometrical accuracy close to net-shape
- Surface roughness
- Sensitive process chain
- Anisotropic material properties
- Support structures needed
- Fabrication speed is comparatively low productivity ~ 20 - 170 cm³/ h
- Build size 800 x 400 x 500 mm³ (l x w x h)

Accelerator Community ?

Recognized metal additive manufacturing activities within accelerator community

Materials used for accelerator parts

Europe: CERN(CH) LAL, CNRS/IN2P3(FR) INFN(IT) **University of** Nottingham(UK) FAU(DE) US: **SLAC** NCSU LLNL RadiaBeam Asia:

Applied AM technologies for accelerators

Applied metal AM technologies:

- PBF-LB
- PBF-EB
- Cold spray

Most often used AM machines:

- GE Arcam
- EOS
- SLM
- Renishaw
- Trumpf
- GE Concept Laser

AM Workshops dedicated to HEP

(registred participants/contributions)

AM in accelerator community

AM in accelerator community

In HIAT '22 please see:

- "Beam Instrumentation, Challenging Tools for Demanding Projects -ca Snapshot from the French Assigned Network" -TU3I2, F.Poirier et al.
- "Innovation Aspects in future Accelerators for Hadron Therapy" – invited talk by Elena Benedetto

Challenges within accelerators

Vacuum, cryo, RF: leak tightness, outgassing rate, porosity, electrical conductivity	Size limita machin available s too	ations of es and imulation ols	Materia clean, cl purity – st avaliabil prope	ls: ultra- nemical ill limited ity, flow erties	Accurac roug toler geometr	cy: surface Ihness, rances, y precision	Radiatio and act	n impact tivation
AM tech specifi optimisa requirm cryc	nnological cities an tion to end nents (RF, o, etc.)	Microst uniformit stresses, i voltage	ructure y, residual nclusions, holding	Poten proces eventu mac	tial post- sing and al hybrid- hining	Yet most in traditionali knowled scepticis complianc stringent a require	mportantly: ism, lack of ige, and m on AM ise with the iccelerator ements	

1/4 RFQ prototype

The first prototype by AM pure-copper RFQ

- AM design and optimisation
- Manufacturing July 2021
- Measurements:
 - ⇒ geometrical precision
 - ⇒ surface roughness
- Results published Nov 2021
- Post-processing Mar/Apr 2022
- measurements after postprocessing – Apr 2022

Post-processing of 1/4 RFQ

- 1. Conventional surface mass finishing
- 2. Chemically assisted surface finishing
- 3. High precision surface finishing with MMP TECHNOLOGY®

IFAST

Surface roughness measurements

Prof. Toms TORIMS on behalf of I.FAST Task 10.2 for HIAT '22

23

Surface roughness before and after post-processing

Post processing method	Side	Ra, µm	Rz, μm
Before post-processing		13.82	48.86
Trad. mass finishing	Α	0.09	0.83
	В	0.07	0.58
Chemically assisted	Α	0.07	0.67
	В	0.12	0.97
MMP TECHNOLOGY®	Α	0.30	3.24
	В	0.11	1.03
Target roughness		0.4	not set

Prof. Toms TORIMS on behalf of I.FAST Task 10.2 for HIAT '22

Attained geometrical accuracy

- Target values:
- 20 µm on vane-tip
- 100 µm elsewhere

Attained geometrical accuracy

AM produced full-size RFQ module

Optimisation of design - thanks to AM

Enabling complex designs

AM produced full-size RFQ module

Manufacturing – May 2022

• Measurements – June 2022

Next steps

Tests of the full RFQ module

- Comprehensive geometrical accuracy and surface roughness measurements @ CERN
- Vacuum, watertightness, and RF tests at IJCLab
- RFQ module has been designed and equipped with the flanges and orifices enabling these tests

Post-processing of full RFQ

Surface engineering:

FAST

- Conventional surface mass finishing
- 2. Chemically assisted surface finishing
- High precision surface finishing

With subsequent full set of measurements

High Voltage Holding tests @ CERN

Future ideas – AM-RFQ for medical applications

- Production of radioisotopes for cancer imaging and treatment with compact linear accelerators
- To use a 750 MHz linac as injector for the He-synchrotron
- To use a 750 MHz linac to produce isotopes
- 750 MHz RFQ, this can be done in AM?

Maurizio Vretenar @ IPAC '22

https://ipac2022.vrws.de/html/author.htm

Challenges within accelerators

AM change of paradigm

- Our community is having new design opportunities
- e.g. RFQ braze-less manufacturing
- Multi-materials are possible
- Hybrid machining options
- Is vastly used by other communities and industries
- Ideal for small quantities high complexity and precision
- Technology is developing rapidly and is accessible

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.