

FRIB Commissioning

Speaker: Peter Ostroumov

F. Casagrande, K. Fukushima, K. Hwang, M. Ikegami, T. Kanemura, S. Kim, S. Lidia, G. Machicoane, T. Maruta, D. Morris, A.S. Plastun, H. Ren, J. Wei, T. Xu, T. Zhang, Q. Zhao, S. Zhao,

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

FRIB Layout

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Staged Beam Commissioning

St	Area with beam	lon species	Beam energy MeV/u	Date	Main goals
1	Front End	Ar, Kr	0.5	July 2017	FE and civil integration
2	First three cryomodules	Ar, Kr	2.2	May 2018	Cryogenic integration, SRF
3	LS1, FS1	Ar, Kr, Xe	20.0	February 2019	104 SRF cavities and stripper
4	FS1, LS2	Ar, Kr, Xe	204 (Ar) 180 (Kr, Xe)	March 2020	2K cryogenics, Linac KPP
5	FS2, LS3	Ar, Kr, Xe	212	April 2021	Linac validation
6	Target Hall	Kr	Rare isotopes	Dec.2021	Project KPP
7	Focal plane of the Advanced Rare Isotope Separator	Ar	210	January 2022	Project completion, readiness for user operation

FRIB Linac Beam Commissioning Stages

- Two ECR ion sources: RT and SC
 - RT- 200 kW of light ions on target
 - SC up to 400 kW of U
 - Extract and accelerate all ion charge states
- LEBT: transport 2q to RFQ

2 MeV/u

- CW RFQ
- Beam studies were reported in PRAB in 2019

Three cryomodules

Front End 500 keV/u 1/2≥q/A≥1/7

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Radio Frequency Quadrupole

Unique parameters:

- CW
- Maximum voltage is 112 kV
- Variable R₀ and voltage
- q/A=1/7

Conditioned at the design voltage

Tested with uranium beam

Frequency (MHz)	80.5
Injection/Output energy (keV/u)	12/500
Beam current (typical, μΑ)	450
Beam emittance (full, norm, πμm)	1.0
Long. Emittance (99.9%, keV/u-ns)	1.5
Transmission efficiency (typical, %)	80
Design charge-to-mass ratio	1/7-1/3
Accelerating voltage ramp (U, kV)	60 – 112
Surface electric field (Kilpatrick)	1.634 (CST)
Quality factor	16500
Operational RF power (kW, O-U)	15 – 100
Length (m)	5.0

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Michigan State University

P.N. Ostroumov, HIAT'22, June 29, 2022, Slide 5

Beam Bunch 6D Vector Matching to SC linac

- A significant beam centroid (6D vector) deviation from previously saved setting has been observed in the MEBT after a cold start of ECR ion source
 - A few mm position and a few degrees of phase deviations in MEBT BPMs
- The python3-based script was developed to fit BPM readings to the previous operation
- Four correctors in LEBT are automatically tuned by Nelder-Mead minimization algorithm
- BPM positions and phase are tuned within +/-1 mm and +/-1 degree
 - About 20 minutes to tune
- Studies are underway to replace the Nelder-Mead with ML-based algorithm
 - Bayesian optimization using experimental data
 - Neural Network based optimization

Superconducting RF

- Challenge: mass-production of 324 SC resonators and 46 cryomodules with required accelerating gradients and specified limit of the heat load
 - This task was successfully accomplished
- FRIB cavity specifications are modest: $E_{PEAK} \cong 30 \text{ MV/m}$, $B_{PEAK} \cong 60 \text{ mT}$
 - All cavities exceeded the specifications
 - About 10% higher accelerating gradients are available from the majority of cavities

SRF Cryomodules

Example of cryomodules' cold mass $\beta = 0.53$

Cryomodules include SC magnet assembly of solenoid and dipole coils

All 46 cryomdules installed in the tunnel and are being used for beam acceleration

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Auto-Start of Resonators

- High accelerator availability through automation
 - Auto-start reduces turn on effort and human error
 - Fast recovery reduces downtime for systems with long start-up time
- Auto-start works for all types of cavities
 - 40 sec to start to full power for a SC cavity
- Turning on 324 cavities in FRIB takes less than 30 minutes
 - Main constrain is a heat removal time by cryogenics

System	Туре	Tuner	Start-up Time	Fast Recovery
MHB	RT	N/A	< 30 s	< 30 s
MEBT	RT	2-phase	~ 3 min	< 20 s
MGB	RT	5-phase	~ 10 min	< 20 s
RFQ	RT	water	~ 45 min	ampl 3s phase 30s
QWR	SC	2-phase	< 60 s	N/A
HWR	SC	Pneum.	< 60 s	N/A
FRIB				

Example of HWR Auto-Start

P.N. Ostroumov, HIAT'22, June 29, 2022, Slide 9

Liquid Lithium Charge Stripper Tested with Ar, Xe and U beams

Lq. Li thickness [mg/cm2] ertical position [mm Tested with 17 and 20 MeV/u Ar, Xe and U beams Tested with 10 pµA pulsed argon beam 1.2 • Average beam power was limited by 500 W beam dump The film thickness 0.8 1 mg/cm² for Xe and Ar beams Li film thickness 0.6 1.4 mg/cm² for U Operated 24/7 for user experiment 0.4Charge distribution • Primary beam was ⁴⁸Ca 2 3 4 5 Horizontal position [mm] 49 +75 +1.0 Xe Nozzle Nozzle U Deflector Deflector 8.0 - 9.0 Fraction Ion beam Li film 0.2 0.0 20 mm 110 140 160 120 130 150 Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Dipole magnet current (A) Michigan State University

Rotating Carbon Foil up to 10 kW Beam on Target

- Use rotatable carbon stripper for simplicity of operation during the first year
 - 100 mm diameter foil, rotating and up-down motion
- Tested with 440 W ⁸⁶Kr beam on the stripper
 - Foil thinning is observed
 - Lifetime is sufficient for a single experiment

Routinely used to run user experiment with ⁸²Se

P.N. Ostroumov, HIAT'22, June 29, 2022, Slide 11

³⁶Ar, ⁸⁶Kr and ¹²⁹Xe Accelerated above 200 MeV/u

Three-charge-state ¹²⁴Xe^{49+,50+,51+} and two-charge state ⁸⁶Kr^{33+,34+} were also accelerated and delivered to the beam dump with 100% transmission

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Factor of 2.5 Increase of Beam Intensity with Three Charge States Acceleration of Xe

- Simultaneous acceleration of 3 charge states of ¹²⁹Xe
 - Transmission is 100%
 - Stripping efficiency into 50+ = 30.5%
 - Stripping efficiency into 49+,50+, 51+=76.5%
- Multi-charge beam phase space was recombined after the dispersive magnetic system

Development of HLAs to Save/Restore Both Machine and Beam Status

- Updated the Settings Manager (Management application of device settings) to save diagnostics (BPMs, BCMs and BLMs)
 - Reference values of automated tuning for the operation with the restored device setting
 - New window is developed to check saved BPM signals

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Model-Based Beam Central Trajectory Correction

- There are 144 BPMs in the FRIB linac to measure beam positions
 - Renewal frequency is 5 Hz
- High Level Application is based on ORM (Orbit Response Matrix)
 - Response matrix is model-based; can be also based on measurements
 - The procedure is applied to ~20 BPM/correctors section by section. Each section tuning time is a couple of minutes
- In combination with model-based phase setting reduces machine tuning/setting time to 3-4 hours

3D Computer Model Setting is Applied for Entire Linac

- 210 MeV/u ³⁶Ar tune for the commissioning of Fragment Separator
- Measured beam parameters are consistent with the simulations

Michigan State University

Instant Setting of RF Phases/Amplitudes for Linac Segments

Static phase shifts in RF transmission/amplifier lines and BPMs' cables were calibrated by the beam of known velocity

Model
Cavity field: $E_i = K_i E_0 \cos(2\pi f t + \Delta \varphi_i + \varphi_i)$ $\begin{cases} \frac{dW}{dz} = qE_z(z) \\ \frac{dt}{dz} = \frac{1}{v_z} \end{cases}$ $E_z(z) = \begin{cases} K_i E_i(z) \cos(\omega t + \Delta \varphi_i + \varphi_i), & z_{i0} < z < z_{ie} \\ 0, & z_{(i-1)e} < z < z_{i0} \end{cases}$ *i* = 0 ÷ N

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Screenshot of Instant Phase Setting (IPS) Application

The phasing of the cavity is based on calibration data and accelerator model, LS1-104 cavities, LS2 – 168, LS3 - 52

IPS Was Applied to Tune around Cavity Failure

- Example: CB09 #8 cavity was tripped and hard to restart
- Alternative cavity setting was developed by IPS so that beam energy is recovered to 20.3 MeV/u without the faulted cavity
 - Set smaller synchronous phase angle in CB08 cavities
 - Re-setting took 10 min but can be significantly reduced in future, less than 1 min
- The energy difference is only 7 keV/u

Beam energies after LS1

P.N. Ostroumov. HIAT'22, June 29, 2022, Slide 19

Trajectory Correction Extending to Tune the Entire Segment by One Knob

- Trajectory Correction application has been in use since 2019
 - ORM method with measurement-based beam response
 - LS1 CB05 to 06 were tuned in about 30 minutes in September 2019 » Spent most of time to measure BPM response to upstream corrector change
- Implemented modelbased trajectory correction application in 2021
 - Calculate response matrix by envelope code FLAME
 - Applied to tune several cryomodules in a few minutes
- This application will be upgraded to series of tuning for the entire LS by one knob

Michigan State University

Beam Status in the Linac for Operators

 After the completion of the reference tune, the operators can observe beam status in the linac using the signals from 144 BPMs

P.N. Ostroumov, HIAT'22, June 29, 2022, Slide 21

One Kilowatt Primary Beams

- I-kW ⁴⁸Ca and ⁸²Se were provided for user experiments in May-June
- No uncontrolled beam losses in the linac

One Kilowatt Beam on Target

- The primary beam is tuned on target with 0.3 mm rms radius
- There is 4-segment collimator upstream of the target
 - The temperature sensors show the heating of the collimator due to beam halo

U.S. Department of Energy Office of Science Michigan State University ⁸²Se beam image on beryllium target

Summary

- Beam commissioning of the FRIB is complete
 - The facility is in operation since April 2022
- Our experience shows that the linac model (online and offline) predicts the beam dynamics very well except for transverse beam steering due to misalignments
- Automation of Linac is essential to increase beamtime for science
 - Many HLAs have been developed for efficient beam tuning
 - There is significant potential to improve the machine performance and reduce setting for each experiment
 - Machine Learning studies and application started in the Front End and will be extended to downstream sections
- The first 2 User experiments were conducted in May-June 2022
 PAC1 approved 34 experiments
- The power ramp-up is being implemented in phases

