Author: Yaramyshev, S.
Paper Title Page
TH1C4 Cavity Designs for the CH3 to CH11 and Bellow Tuner Investigation of the Superconducting Heavy Ion Accelerator HELIAC 140
 
  • T. Conrad, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • W.A. Barth, M. Basten, F.D. Dziuba, V. Gettmann, M. Heilmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, A. Rubin, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
 
  New CH-DTL cavities designs of the planned Helmholtz Linear Accelerator (HELIAC) are developed in collaboration of GSI, HIM and IAP Frankfurt. The in cw-mode operating linac with a final energy of 7.3 MeV/u, is intended for various experiments, in particular with heavy ions at energies close to the Coulomb barrier for research on SHE. Twelve sc CH cavities are foreseen, divided into four different cryostats each equipped with two dynamic bellow tuner. After successful beam tests with CH0, CH3 to CH11 were designed. Based on the experience gained so far, optimizations were made, which will lead to both an increase in performance in terms of reducing the peak fields limiting superconductivity and a reduction in manufacturing costs and time. In order to optimize manufacturing, attention was paid to design many parts of the cavity, such as lids, spokes, tuner and helium shell, with the same geometrical dimensions. In addition, a tuner test rig was developed, which will be used to investigate the mechanical properties of the bellow tuner. For this purpose, different simulations were made in order to realize conditions as close as possible to reality in the test rig.  
slides icon Slides TH1C4 [6.439 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH1C4  
About • Received ※ 27 June 2022 — Revised ※ 19 July 2022 — Accepted ※ 10 August 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH3C2 Alternating Phase Focusing Based IH DTL for Heavy Ion Application 162
 
  • S. Lauber, K. Aulenbacher, W.A. Barth, M. Basten, C. Burandt, F.D. Dziuba, P. Forck, V. Gettmann, T. Kürzeder, J. List, M. Miski-Oglu, A. Rubin, S. Yaramyshev
    GSI, Darmstadt, Germany
  • K. Aulenbacher, W.A. Barth, M. Basten, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, S. Yaramyshev
    HIM, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba, S. Lauber, J. List
    KPH, Mainz, Germany
  • M. Droba, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • H. Podlech
    HFHF, Frankfurt am Main, Germany
 
  The continuous wave (CW) operated HElmholtz LInear ACcelerator (HELIAC) is going to reach the next milestone with the commissioning of the superconducting (SC) Advanced Demonstrator cryomodule, comprising four SC Crossbar H-mode (CH) cavities and SC steerer magnets. In parallel with the commissioning of the SC main accelerator, the normal conducting injector consisting of an ECR ion source, a RFQ and two Interdigital H-mode (IH) cavities will be built based on an Alternating Phase Focusing (APF) beam dynamics scheme. Both IH cavities will provide a beam energy gain from 300 keV/u to 1400 keV/u with a maximum mass to charge ratio of 6, requiring only one external quadrupole triplet and beam steerer elements between them. The APF concept allows stable and effective beam transport with transverse and longitudinal focusing, enabling an efficient and compact design. Due to the stringent requirements of the APF concept on the voltage distribution and the CW operation, optimization of each cavity in terms of RF, mechanical and thermal properties is crucial for successful operation of the HELIAC injector. The current layout of the APF based and CW operated injector will be presented.  
slides icon Slides TH3C2 [1.603 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH3C2  
About • Received ※ 21 June 2022 — Revised ※ 04 July 2022 — Accepted ※ 10 August 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH3C3 Recent UNILAC Upgrade Activities 166
 
  • U. Scheeler, W.A. Barth, M. Miski-Oglu, H. Vormann, M. Vossberg, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, M. Miski-Oglu, S. Yaramyshev
    HIM, Mainz, Germany
  • W.A. Barth
    KPH, Mainz, Germany
 
  The GSI UNILAC is the section of the GSI accelerator facility that has been in operation the longest. UNILAC is able to accelerate ions from hydrogen to ura-nium up to 20 MeV (p+) and 13 MeV/u (uranium). The main focus of the recent upgrade measures is to meet the FAIR requirements and to provide reliable and long term beam operation conditions. Besides post stripper upgrade and upgrade of the UNILAC controls, a particular atten-tion is paid to improve the performance of the High Current Injector (HSI) [1-7] and to intensify spare part management for the ageing accelerator. In order to en-sure operational reliability, the main focus lies on exten-sive spare part management and replacement of outdated equipment. Modified beam dynamics design for the frontend system and the use of advanced technologies are needed to improve the UNILAC performance. Among other things, a modified Low and Medium Energy Beam Transport section design for the HSI and installation of reliable (non-destructive) high intensity beam diagnos-tics devices are in progress. This paper addresses the status of current development efforts and specific plans for the UNILAC upgrade.  
slides icon Slides TH3C3 [1.595 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH3C3  
About • Received ※ 20 June 2022 — Revised ※ 28 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH4C3 High Intensity Proton Beams at GSI (Heavy Ion) UNILAC 170
 
  • W.A. Barth, M. Miski-Oglu, U. Scheeler, H. Vormann, M. Vossberg, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, M. Miski-Oglu
    HIM, Mainz, Germany
 
  A significant part of the experimental program at FAIR is dedicated to pbar physics requiring a high number of cooled pbars per hour. The primary proton beam has to be provided by a 70 MeV proton linac followed by two synchrotrons. The new FAIR proton linac will deliver a pulsed high intensity proton beam of up to 35 mA of 36 µs duration at a repetition rate of 4 Hz. The GSI heavy ion linac (UNILAC) is able to deliver intense heavy ion beam for injection into SIS18, but it is not suitable for FAIR relevant proton beam operation. In an advanced machine investigation program it could be shown, that the UNILAC is able to provide for sufficient high intensities of CH3-beam, cracked (and stripped) in a supersonic nitrogen gas jet into protons and carbon ions. This new operational approach results in up to 3 mA of proton intensity at a maximum beam energy of 20 MeV, 100 µs pulse duration and a rep. rate of 4 Hz. For some time now, UNILAC proton beam operation with higher intensities has been offered as standard for users. Recent linac beam measurements will be presented, showing that the UNILAC is able to bridge the time until the FAIR-proton linac delivers high-intensity proton beams.  
slides icon Slides TH4C3 [3.539 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH4C3  
About • Received ※ 11 June 2022 — Revised ※ 28 June 2022 — Accepted ※ 10 August 2022 — Issue date ※ 29 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)