Applications: Medical, Materials, Isotopes, Space and others
Paper Title Page
MO3I1 Developments towards a Compact Carbon Ion Linac for Cancer Therapy 14
  • B. Mustapha, D.A. Meyer, A. Nassiri, Y. Yang
    ANL, Lemont, Illinois, USA
  • R.B. Agustsson, A. Araujo, S.V. Kutsaev, A.Yu. Smirnov
    RadiaBeam, Los Angeles, California, USA
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and Office of High Energy Physics SBIR/STTR Award DE-SC0015717.
Hadron therapy offers improved localization of the dose to the tumor and much improved sparing of healthy tissues, compared to traditional X-ray therapy. Combined proton/carbon therapy can achieve the most precise dose confinement to the tumor. Moreover, recent studies indicated that adding FLASH capability to such system may provide significant breakthrough in cancer treatment. The Advanced Compact Carbon Ion Linac (ACCIL) is a conceptual design for a compact ion linac based on high-gradient accelerating structures operating in the S-band frequency range. Thanks to this innovation, the footprint of this accelerator is only 45 m, while its capabilities are well beyond the current state of the art for hadron therapy machines and include: operation up to 1000 pulses per second, pulse to pulse energy variation to treat moving tumors in layer-by-layer regime. ACCIL is capable of accelerating all ions with mass-to-charge ratio A/q ~ 2 to a full energy of 450 MeV/u, and that includes protons, helium, carbon, oxygen and neon. With very short beam pulses of ~ 1 ’s and high instantaneous dose delivery, ACCIL is capable of delivering FLASH-like doses (>100 Gy/sec) for most ion species. In close collaboration between Argonne and Radiabeam, we have developed different design options and prototypes of the high-gradient structures needed for ACCIL. Following an overview of the ACCIL design and its capabilities, the most recent results from the high-gradient structure R&D and future plans will be presented and discussed.
slides icon Slides MO3I1 [3.259 MB]  
DOI • reference for this paper ※  
About • Received ※ 27 June 2022 — Revised ※ 10 August 2022 — Accepted ※ 05 September 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MO3C2 Establishment of the New Particle Therapy Research Center (PARTREC) at UMCG Groningen 20
  • A. Gerbershagen, L. Barazzuol, S. Both, S. Brandenburg, R.P. Coppes, P.G. Dendooven, B.N. Jones, J.M. Schippers, E.R. Van Der Graaf, P. Van Luijk, M.-J. van Goethem
    PARTREC, Groningen, The Netherlands
  After 25 years of successful research in the nuclear and radiation physics domain, the KVI-CART research center in Groningen is upgraded and re-established as the PARticle Therapy REsearch Center (PARTREC). Using the superconducting cyclotron AGOR and being embedded within the University Medical Center Groningen, it operates in close collaboration with the Groningen Proton Therapy Center. PARTREC uniquely combines radiation physics, medical physics, biology and radiotherapy research with an R&D program to improve hadron therapy technology and advanced radiation therapy for cancer. A number of further upgrades, scheduled for completion in 2023, will establish a wide range of irradiation modalities, such as pencil beam scanning, shoot-through with high energy protons and SOBP for protons, helium and carbon ions. Delivery of spatial fractionation (GRID) and dose rates over 300 Gy/s (FLASH) are envisioned. In addition, PARTREC delivers a variety of ion beams and infrastructure for radiation hardness experiments conducted by scientific and commercial communities, and nuclear science research in collaboration with the Faculty of Science and Engineering of the University of Groningen.  
slides icon Slides MO3C2 [12.702 MB]  
DOI • reference for this paper ※  
About • Received ※ 16 June 2022 — Revised ※ 28 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP16 Seven Decades of Science with Accelerators at IPHC 104
  • F.R. Osswald
    IPHC, Strasbourg Cedex 2, France
  The Institut Pluridisciplinaire Hubert Curien (IPHC) is a laboratory with solid foundations and perspectives to overcome future challenges. It is a component of the Centre National de Recherche Scientifique (CNRS) and the university of Strasbourg. It has been founded in 2006 after fusion of three local laboratories in the field of ecology/environment, chemistry and subatomic physics. The activities related with subatomic physics presents a rich history which goes back to the 40’s and is now evolving towards new challenges at the frontier of the innovation with the contribution of other sciences as biology, chemistry, medicine and radiotherapy. The paper will recover a number of past and current activities with emphasis on the link between research and technology.  
DOI • reference for this paper ※  
About • Received ※ 13 June 2022 — Revised ※ 28 June 2022 — Accepted ※ 10 August 2022 — Issue date ※ 30 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP17 Beam Dynamics and Space Charge Studies for the InnovaTron Cyclotron 108
  • G. D’Agostino, W.J.G.M. Kleeven
    IBA, Louvain-la-Neuve, Belgium
  At IBA a high-intensity compact self-extracting cyclotron is being studied. There is no dedicated extraction device but instead, a special shaping of the magnetic iron and the use of harmonic coils to create large turn-separation. Proton currents up to 5 mA are aimed for. This would open new ways for large-scale production of medical radioisotopes. The main features of the cyclotron are presented. A major variable of the beam simulations is the space charge effect in the cyclotron center. Using the SCALA-solver of Opera3D, we attempt to find the ion source plasma meniscus and the beam phase space and current extracted from it. With these properties known, we study the bunch formation and acceleration under high space charge condition with our in-house tracking code AOC. We also discuss a new tool that automatizes optimization of cyclotron settings for maximizing beam properties such as extraction efficiency.
*Work supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 886190
poster icon Poster TUP17 [2.549 MB]  
DOI • reference for this paper ※  
About • Received ※ 28 June 2022 — Revised ※ 10 August 2022 — Accepted ※ 29 September 2022 — Issue date ※ 29 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
Innovation Aspects in Future Accelerators for Hadron Therapy  
  • E. Benedetto
    SEEIIST, Geneva, Switzerland
  • M. Vretenar
    CERN, Meyrin, Switzerland
  Funding: This work is partially supported by the European Union H2020 research and innovation programme under GA 101008548 (HITRIplus).
Modern accelerators for hadron therapy need to provide high intensity beams for innovative dose-delivery modalities such as FLASH, pencil beams for 3D scanning, as well as multiple ions for profiting of their different radio-biological properties. They need to be compact, cheap and have a reduced energy footprint. At the same time, they need to be reliable, robust and simple to operate. Cyclotrons (and compact synchrotrons) are nowadays the standard for proton therapy. For heavier ions such as carbon, synchrotrons remain the most viable option, together with the development of full-linac and FFA solutions. Concerning medical synchrotrons, new European initiatives study the feasibility of advanced multi-turn injection (including a new linac dimensioned to produce medical radioisoptopes in parallel) and advanced extraction modalities. Moreover, an innovative synchrotron for carbon ions, equipped with superconducting magnets, and a compact synchrotron optimized for helium ions, making use of proven normal-conducting technology, are being designed.
slides icon Slides WE1I4 [13.838 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)