Keyword: controls
Paper Title Other Keywords Page
TU2C4 Beam Tuning Automation Activities at TRIUMF linac, framework, database, quadrupole 52
 
  • S. Kiy, F. Ames, A. Andres, R.A. Baartman, H. Bagri, K. Ezawa, W. Fedorko, P.M. Jung, O.K. Kester, K.E. Lucow, J. Nasser, T. Planche, S.D. Rädel, B.E. Schultz, O. Shelbaya, B. Stringer, D.C. Thomson, D.Y. Wang, K.C. Wu
    TRIUMF, Vancouver, Canada
  • J.A. Adegun
    UVIC, Victoria, Canada
 
  Funding: This activity is supported by MITACS IT23740
The particle accelerator complex at TRIUMF provides beams for secondary particle production including rare isotopes. The post acceleration of rare isotope ions demands frequent changes of beam properties like energy and changes of the ion species in terms of isotope and charge state. To facilitate these changes to beam properties and species, a High Level Applications (HLA) framework has been developed that provides the essential elements necessary for app development: access to sophisticated envelope simulations and any necessary beamline data, integration with the control system, version control, deployment and issue tracking, and training materials. With this framework, one can automate collection of beam data and subsequently pull that data into a model which then outputs the necessary adjustments to beam optics. Tuning based on this method is model coupled accelerator tuning (MCAT) and includes pursuits like the training of machine learning (ML) agents to optimize corrections benders. A summary of the framework will be provided followed by a description of the different applications of the MCAT method - both those currently being pursued, and those envisioned for the future.
 
slides icon Slides TU2C4 [1.890 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TU2C4  
About • Received ※ 21 June 2022 — Revised ※ 30 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP03 Bunch Merging and Compression: Recent Progress with RF and LLRF Systems for FAIR cavity, LLRF, target, operation 67
 
  • D.E.M. Lens, R. Balß, H. Klingbeil, U. Laier, J.S. Schmidt, K.G. Thomin, T. Winnefeld, B. Zipfel
    GSI, Darmstadt, Germany
  • H. Klingbeil
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Besides the realization of several new RF systems for the new heavy-ion synchrotron SIS100 and the storage rings CR and HESR, the FAIR project also includes an upgrade of the RF systems of the existing accelerator rings such as SIS18. The SIS18 RF systems currently comprise two ferrite cavities, three broadband magnetic-alloy cavities and one bunch-compressor cavity. In addition, the LLRF system has been continuously upgraded over the past years towards the planned topology that will be implemented for all FAIR ring accelerators. One of the challenges for the SIS18 RF systems is the large RF frequency span between 400 kHz and 5.4 MHz. Although the SIS18 upgrade is still under progress, a major part of the functionality has already been successfully tested with beam in machine development experiments (MDE). This includes multi-harmonic operation such as dual-harmonic acceleration and further beam gymnastics manipulations such as bunch merging and bunch compression. Many of these features are already used in standard operation. In this contribution, the current status is illustrated and recent MDE results are presented that demonstrate the capabilities of the RF systems for FAIR.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TUP03  
About • Received ※ 21 June 2022 — Revised ※ 30 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP10 High Power Tests of a New 4-Rod RFQ with Focus on Thermal Stability rfq, experiment, operation, MMI 93
 
  • S.R. Wagner, D. Koser, H. Podlech
    IAP, Frankfurt am Main, Germany
  • M. Basten
    GSI, Darmstadt, Germany
  • M. Basten
    HIM, Mainz, Germany
  • H. Podlech
    HFHF, Frankfurt am Main, Germany
 
  Due to strong limitations regarding operational stability of the existing HLI-RFQ a new design and prototype were commissioned. Three main problems were observed at the existing RFQ: A strong thermal sensitivity, modulated reflected power, and insufficient stability of the contact springs connecting the stems with the tuning plates. Although the last problem was easily solved, the first two remained and greatly hindered operations. To resolve this issue and ensure stable injection into the HLI, a new RFQ-prototype, optimized in terms of vibration suppression and cooling efficiency, was designed at the Institute of Applied Physics (IAP) of Goethe University Frankfurt. To test the performance of this prototype, high power tests with more than 25 kW/m were performed at GSI. During those, it was possible to demonstrate operational stability in terms of thermal load and mechanical vibrations, calculating the thermal detuning, and proof the reliability of the proposed design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TUP10  
About • Received ※ 21 June 2022 — Revised ※ 10 August 2022 — Accepted ※ 30 September 2022 — Issue date ※ 30 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP11 Upgrade and Operation of the ATLAS Radiation Interlock System (ARIS) radiation, operation, Linux, PLC 96
 
  • B.R. Blomberg, B. Back, K.J. Bunnell, J.A. Clark, M.R. Hendricks, C.E. Peters, J. Reyna, G. Savard, D. Stanton, L. Weber
    ANL, Lemont, Illinois, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE-AC02-06CH11357.
ATLAS (the Argonne Tandem Linac Accelerator Sys-tem) is a superconducting heavy ion accelerator which can accelerate nearly all stable, and some unstable, iso-topes between hydrogen and uranium. Prompt radiation fields from gamma and or neutron are typically below 1 rem/hr at 30 cm, but are permitted up to 300 rem/hr at 30 cm. The original ATLAS Radiation Interlock System (ARIS), hereafter referred to as ARIS 1.0 was installed 30 years ago. While it has been a functional critical safe-ty system, its age has exposed the facility to high risk of temporary shutdown due to failure of obsolete compo-nents. Topics discussed will be architecture, hardware improvements, functional improvements, and operation permitting personnel access to areas with low levels of radiation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TUP11  
About • Received ※ 30 June 2022 — Revised ※ 10 August 2022 — Accepted ※ 04 September 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP19 First Tests of Model-Based Linac Phasing in ISAC-II cavity, linac, ISAC, solenoid 113
 
  • S. Kiy, R.A. Baartman, O.K. Kester, O. Shelbaya
    TRIUMF, Vancouver, Canada
 
  As the e-linac and ARIEL facilities at TRIUMF progress, the impending complexity of operating three simultaneous rare ion beams (RIBs) approaches. To help prepare for this, a framework for the development of High Level Applications has been constucted, upon which multiple avenues for improvement towards model-based and automated tuning are being pursued. Along one of these avenues, the 40-cavity superconducting ISAC-II heavy ion linac has been studied and modelled in the envelope code transoptr. This has allowed for real-time integration through the on-axis fields, fitting focal strengths of solenoids to achieve desired beam waists, and calculation of necessary cavity phases to achieve a desired output energy for given input beam parameters. Initial tests have been completed, successfully phasing up to 37 cavities using the transoptr model and achieving a final output energy within 1% of the expected while maintaining nominal (>90%) transmission. A summary of the calibration of the model to the machine is given, followed by results of the phasing tests and an outlook towards future improvements.  
poster icon Poster TUP19 [0.355 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TUP19  
About • Received ※ 26 June 2022 — Revised ※ 01 July 2022 — Accepted ※ 10 August 2022 — Issue date ※ 29 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1I2 Reinforcement Learning and Bayesian Optimization for Ion Linac Operations simulation, quadrupole, rfq, experiment 130
 
  • J.L. Martinez Marin, B.R. Blomberg, K.J. Bunnell, G.M. Dunn, E. Letcher, B. Mustapha, D. Stanton
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. This research used the ATLAS facility, which is a DOE Office of Nuclear Physics User Facility.
The use of artificial intelligence can significantly reduce the time needed to tune an accelerator system such as the Argonne Tandem Linear Accelerator System (ATLAS) where a new beam is tuned once or twice a week. After establishing automatic data collection procedures and having analysed the data, machine learning models were developed and tested to tune subsections of the linac. Models based on Reinforcement Learning (RL) and Bayesian Optimization (BO) were developed, their respec-tive results are discussed and compared. RL and BO are well known AI techniques, often used for control systems. The results were obtained for a subsection of ATLAS that contains complex elements such as the radio-frequency quadrupole (RFQ). The models will be later generalized to the whole ATLAS linac, and similar models can be devel-oped for any accelerator with a modern control system.
 
slides icon Slides TH1I2 [4.617 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH1I2  
About • Received ※ 09 July 2022 — Revised ※ 10 August 2022 — Accepted ※ 19 September 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1C3 Automation of RF and Cryomodule Operation at FRIB cavity, operation, SRF, linac 136
 
  • S. Zhao, E. Bernal, W. Chang, E. Daykin, E. Gutierrez, W. Hartung, S.H. Kim, S.R. Kunjir, T.L. Larter, D.G. Morris, J.T. Popielarski, H.T. Ren, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The Facility for Rare Isotope Beams (FRIB) has been commissioned, with rare isotopes first produced in December 2021 and first user experiments conducted in May 2022. The FRIB driver linear accelerator (linac) uses 6 room temperature cavities, 324 superconducting cavities, and 69 superconducting solenoids to accelerate ions to more than 200 MeV/nucleon. Because of the large scale, automation is essential for reliable linac operation with high availability. Automation measures implemented during linac commissioning include turn-on of the cavities and solenoids, turn-on and fast recovery for room temperature devices, and emergency shut down of linac devices. Additional automated tasks include conditioning of multipacting barriers in the cavities and calibration of the control valves for the pneumatic tuners. To ensure a smooth transition to operations, we are currently working on real-time health monitoring of the linac cryomodules, including critical signals such as X-ray levels, RF coupler temperatures, and cryogenic parameters. In this paper, we will describe our automation procedures, the implementation details, and the experience we gained.
 
slides icon Slides TH1C3 [1.966 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH1C3  
About • Received ※ 21 June 2022 — Revised ※ 25 July 2022 — Accepted ※ 10 August 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)