Keyword: operation
Paper Title Other Keywords Page
MO1C3 High Voltage Upgrade of the 14UD Tandem Accelerator electron, simulation, heavy-ion, acceleration 1
 
  • T.B. Tunningley, S.T. Battisson, A. Cooper, J.K. Heighway, D.J. Hinde, C. Kafer, T. Kitchen, P. Linardakis, N.R. Lobanov, C. Notthoff, T. Tempra, B. Tranter, R. Tranter
    Research School of Physics and Engineering, Australian National University, Canberra, Australian Capitol Territory, Australia
  • R.A. Bosch
    UW-Madison/SRC, Madison, Wisconsin, USA
  • J.E. Raatz
    NEC, Middleton, Wisconsin, USA
 
  The 14UD at the Aus­tralian Na­tional Uni­ver­sity’s Heavy Ion Ac­cel­er­a­tor Fa­cil­ity (HIAF) op­er­ated at a max­i­mum volt­age of 15.5 MV after the in­stal­la­tion of tubes with a com­pressed geom­e­try in the 1990s. In re­cent years, the per­for­mance of the ac­cel­er­a­tor has shown a grad­ual de­cline to a max­i­mum op­er­a­tion volt­age of ~14.5 MV. There are some fun­da­men­tal fac­tors that limit the high volt­age per­for­mance, such as SF6 gas pres­sure, field en­hance­ment due to triple junc­tions and total volt­age ef­fect. In 2019 ANU ini­ti­ated the fea­si­bil­ity study of avail­able op­tions to up­grade the en­tire pop­u­la­tion of sup­port­ing posts, ac­cel­er­a­tion tubes and grad­ing re­sis­tors. In this paper we will dis­cuss the pre­ferred tech­nolo­gies and strate­gies for suc­cess­ful im­ple­men­ta­tion of this de­vel­op­ment. The cho­sen de­sign is based on NEC tubes with mag­netic elec­tron sup­pres­sion and min­i­mized steer­ing of ion beam. The new grad­ing re­sis­tors mount­ing op­tions and im­proved volt­age dis­tri­b­u­tion along ac­cel­er­a­tor col­umn time­line will be dis­cussed.  
slides icon Slides MO1C3 [28.718 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-MO1C3  
About • Received ※ 25 May 2022 — Revised ※ 27 June 2022 — Accepted ※ 10 August 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3I3 Heavy Ion Stripping target, heavy-ion, synchrotron, linac 24
 
  • P. Gerhard, M.T. Maier
    GSI, Darmstadt, Germany
 
  Ion strip­ping is pri­mar­ily an es­sen­tial tech­nique for heavy ion ac­cel­er­a­tors in order to reach higher beam en­er­gies within rea­son­able size and bud­get lim­its. Due to the na­ture of the strip­ping process, the re­sult­ing ion beam con­tains ions of dif­fer­ent charge states. There­fore, high beam loss is typ­i­cally as­so­ci­ated, mak­ing the net strip­ping ef­fi­ciency one of the de­ci­sive el­e­ments of the over­all per­for­mance of an ac­cel­er­a­tor or fa­cil­ity. Sev­eral tech­ni­cal im­ple­men­ta­tions of strip­pers have been and are still being de­vel­oped in order to ob­tain op­ti­mal strip­ping for dif­fer­ent ions and beam en­er­gies by em­ploy­ing dif­fer­ent kinds of strip­ping tar­gets, namely gaseous, solid and more re­cently fluid ma­te­ri­als. High beam in­ten­si­ties re­sult­ing in pro­hib­i­tive en­ergy de­po­si­tion and tar­get de­struc­tion are chal­leng­ing. Op­ti­miz­ing a strip­per may po­ten­tially in­crease the over­all per­for­mance by a large fac­tor with less ef­fort than other ac­tions. This gave rise to the pulsed gas strip­per pro­ject at the GSI UNI­LAC. This talk will give an overview of dif­fer­ent strip­pers at GSI and be­yond. The sec­ond part will give a de­tailed re­port on the in­tro­duc­tion of hy­dro­gen at the GSI gas strip­per.  
slides icon Slides MO3I3 [53.513 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-MO3I3  
About • Received ※ 21 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 10 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO4I2 Liquid Lithium Charge Stripper Commissioning with Heavy Ion Beams and Early Operations of FRIB Strippers heavy-ion, MMI, linac, vacuum 31
 
  • T. Kanemura, N.K. Bultman, R. Madendorp, F. Marti, T. Maruta, Y. Momozaki, J.A. Nolen, P.N. Ostroumov, A.S. Plastun, H.T. Ren, A. Taylor, J. Wei, Q. Zhao
    FRIB, East Lansing, Michigan, USA
  • M.J. LaVere
    MSU, East Lansing, Michigan, USA
  • Y. Momozaki, J.A. Nolen
    ANL, Lemont, Illinois, USA
 
  Funding: This work is supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Fa­cil­ity for Rare Iso­tope Beams (FRIB) at Michi-gan State Uni­ver­sity is a 400 kW heavy ion lin­ear ac­cel-er­a­tor. Heavy ion ac­cel­er­a­tors nor­mally in­clude a charge strip­per to re­move elec­trons from the beams to in­crease the charge state of the beams thus to in­crease the en­ergy gain. Thin car­bon foils have been the tra­di­tional charge strip­per but are lim­ited in power den­sity by the dam­age they suf­fer (sub­li­ma­tion and ra­di­a­tion dam­age) and con-se­quently short life­times. Be­cause of the high beam pow-er, FRIB had de­cided to use a liq­uid lithium charge strip-per (LLCS), a self-re­plen­ish­ing medium that is free from ra­di­a­tion dam­age. FRIB re­cently com­mis­sioned a LLCS with heavy ion beams (36Ar, 48Ca, 124Xe and 238U beams at en­er­gies of 17-20 MeV/u). Since there had been no ex­per-imen­tal data avail­able of charge strip­ping char­ac­ter­is­tics of liq­uid lithium, this was the first demon­stra­tion of charge strip­ping by a LLCS. The beams were suc­cess­fully stripped by the LLCS with slightly lower charge states than the car­bon foils of the same mass thick­ness. The LLCS started serv­ing the charge strip­per for FRIB user op­er­a­tions with a backup ro­tat­ing car­bon foil charge strip­per. FRIB has be­come the world’s first ac­cel­er­a­tor that uti­lizes a LLCS.
 
slides icon Slides MO4I2 [6.337 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-MO4I2  
About • Received ※ 26 June 2022 — Revised ※ 27 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO4C3 Development, Fabrication and Testing of the RF-Kicker for the Acculinna-2 Fragment Separator kicker, cavity, coupling, experiment 37
 
  • W. Beeckman, F. Forest, O. Tasset-Maye, E.J. Voisin
    SIGMAPHI S.A., Vannes, France
  • A. Bechtold
    NTG Neue Technologien GmbH & Co KG, Gelnhausen, Germany
  • A.S. Fomichev, A.V. Gorshkov, S.A. Krupko, G.M. Ter-Akopian
    JINR/FLNR, Moscow region, Russia
 
  The Ac­culinna-2 ra­dioac­tive beam sep­a­ra­tor was de­signed and built be­tween 2012 and 2014, then in­stalled and tested by Sigmaphi in 2015 and in full op­er­a­tion since 2016 at the Flerov lab­o­ra­tory of JINR in Dubna. In order to achieve ef­fi­cient sep­a­ra­tion of neu­tron-de­fi­cient species, an RF kicker was fore­seen since the be­gin­ning of the pro­ject but was put on hold for many years. In 2016 Sigmaphi got a con­tract to study, build, in­stall and test an RF kicker with a vari­able fre­quency rang­ing be­tween 15 and 21 MHz and ca­pa­ble of pro­duc­ing 15kV/cm trans­verse elec­tric fields in a 10 cm gap over a 1m long dis­tance.# The pre­sen­ta­tion first re­calls the ra­tio­nale of an RF-kicker to sep­a­rate neu­tron-de­fi­cient species. It then goes through the dif­fer­ent steps of the study, ini­tial choice of the cav­ity struc­ture, first di­men­sion­ing from an­a­lyt­i­cal for­mu­las, fi­nite el­e­ments com­pu­ta­tions and tun­ing meth­ods en­vi­sioned, down to a final pre­lim­i­nary de­sign.# A 1/10 scaled mock-up of this final shape was built and tested as a check be­fore build­ing the full-size cav­ity. The NTG com­pany was then con­tracted to per­form, in a joint col­lab­o­ra­tion with Sigmaphi, the final study, de­tailed de­sign, con­struc­tion and fac­tory test­ing of the real cav­ity. The pre­sen­ta­tion high­lights the fab­ri­ca­tion and tests of both mock-up and real size cav­i­ties through a se­ries of pic­tures.# The com­plete RF-kicker, with its power sup­ply, con­trol and pump­ing sys­tems was in­stalled on the Ac­culinna-2 beam­line in June 2019. Be­cause the U400M cy­clotron was due to shut down by mid-2020, the Ac­culinna-2 team de­cided to use the sep­a­ra­tor to ac­cu­mu­late as much data as pos­si­ble, to be processed dur­ing the 2 years clos­ing time. A 1-week time win­dow for kicker test­ing was only avail­able in Feb­ru­ary 2020, a short but suf­fi­cient time lapse to suc­cess­fully drive the cav­ity at full power and test it over a wide fre­quency range. Un­for­tu­nately, be­cause of cy­clotron clo­sure, no beam tests have been per­formed so far. The lat­est avail­abl  
slides icon Slides MO4C3 [16.742 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-MO4C3  
About • Received ※ 26 June 2022 — Revised ※ 10 August 2022 — Accepted ※ 15 September 2022 — Issue date ※ 29 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU3I2 Beam Instrumentation, Challenging Tools for Demanding Projects –– a Snapshot from the French Assigned Network diagnostics, instrumentation, network, emittance 57
 
  • F. Poirier, T. Durand, C. Koumeir
    Cyclotron ARRONAX, Saint-Herblain, France
  • T. Adam, E. Bouquerel, C. Maazouzi, F.R. Osswald
    IPHC, Strasbourg Cedex 2, France
  • P. Bambade, S.M. Ben Abdillah, N. Delerue, H. Guler
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • B. Cheymol, D. Dauvergne, M.-L. Gallin-Martel, R. Molle, C. Peaucelle
    LPSC, Grenoble Cedex, France
  • L. Daudin, A.A. Husson, B. Lachacinski, J. Michaud
    LP2I, Gradignan, France
  • C. Jamet
    GANIL, Caen, France
  • C. Thiebaux, M. Verderi
    LLR, Palaiseau, France
 
  Par­ti­cle ac­cel­er­a­tors are thrust­ing the ex­plo­ration of beam pro­duc­tion to­wards sev­eral de­mand­ing ter­ri­to­ries, that is beam high in­ten­sity, high en­ergy, short time and geom­e­try pre­ci­sion or small size. Ac­cel­er­a­tors have thus more and more strin­gent char­ac­ter­is­tics that need to be mea­sured. Beam di­ag­nos­tics ac­com­pany these trends with a di­ver­sity of ca­pac­i­ties and tech­nolo­gies that can en­com­pass com­pact­ness, ra­di­a­tion hard­ness, low beam per­tur­ba­tion, or fast re­sponse and have a cru­cial role in the val­i­da­tion of the var­i­ous op­er­a­tion phases. Their de­vel­op­ments also call for spe­cial­ized knowl­edge, ex­per­tise and tech­ni­cal re­sources. A snap­shot from the French CNRS/IN2P3 beam in­stru­men­ta­tion net­work is pro­posed. It aims to pro­mote ex­changes be­tween the ex­perts and fa­cil­i­tate the re­al­iza­tion of pro­ject within the field. The net­work and sev­eral beam di­ag­nos­tic tech­nolo­gies will be ex­posed. It in­cludes de­vel­op­ments of sys­tem with low beam in­ter­ac­tion char­ac­ter­is­tics such as PEPITES, fast re­sponse de­tec­tor such as the di­a­mond-based by DI­AMMONI, highly ded­i­cated BPM for GANIL-SPI­RAL2, emit­tance-me­ters which deals with high in­ten­sity beams and de­vel­op­ment for MYRRHA, SPI­RAL2-DE­SIR and NEW­GAIN.  
slides icon Slides TU3I2 [6.370 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TU3I2  
About • Received ※ 20 June 2022 — Revised ※ 30 June 2022 — Accepted ※ 10 August 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP03 Bunch Merging and Compression: Recent Progress with RF and LLRF Systems for FAIR cavity, LLRF, controls, target 67
 
  • D.E.M. Lens, R. Balß, H. Klingbeil, U. Laier, J.S. Schmidt, K.G. Thomin, T. Winnefeld, B. Zipfel
    GSI, Darmstadt, Germany
  • H. Klingbeil
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Be­sides the re­al­iza­tion of sev­eral new RF sys­tems for the new heavy-ion syn­chro­tron SIS100 and the stor­age rings CR and HESR, the FAIR pro­ject also in­cludes an up­grade of the RF sys­tems of the ex­ist­ing ac­cel­er­a­tor rings such as SIS18. The SIS18 RF sys­tems cur­rently com­prise two fer­rite cav­i­ties, three broad­band mag­netic-al­loy cav­i­ties and one bunch-com­pres­sor cav­ity. In ad­di­tion, the LLRF sys­tem has been con­tin­u­ously up­graded over the past years to­wards the planned topol­ogy that will be im­ple­mented for all FAIR ring ac­cel­er­a­tors. One of the chal­lenges for the SIS18 RF sys­tems is the large RF fre­quency span be­tween 400 kHz and 5.4 MHz. Al­though the SIS18 up­grade is still under progress, a major part of the func­tion­al­ity has al­ready been suc­cess­fully tested with beam in ma­chine de­vel­op­ment ex­per­i­ments (MDE). This in­cludes multi-har­monic op­er­a­tion such as dual-har­monic ac­cel­er­a­tion and fur­ther beam gym­nas­tics ma­nip­u­la­tions such as bunch merg­ing and bunch com­pres­sion. Many of these fea­tures are al­ready used in stan­dard op­er­a­tion. In this con­tri­bu­tion, the cur­rent sta­tus is il­lus­trated and re­cent MDE re­sults are pre­sented that demon­strate the ca­pa­bil­i­ties of the RF sys­tems for FAIR.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TUP03  
About • Received ※ 21 June 2022 — Revised ※ 30 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP06 Cryogenic Surfaces in a Room Temperature SIS18 Ioncatcher vacuum, cryogenics, heavy-ion, simulation 79
 
  • L.H.J. Bozyk, S. Aumüller, P.J. Spiller
    GSI, Darmstadt, Germany
 
  For FAIR op­er­a­tion, the ex­ist­ing heavy ion syn­chro­tron SIS18 at GSI will be used as booster for the fu­ture SIS100. In order to reach the in­ten­sity goals, medium charge state heavy ions will be used. Un­for­tu­nately, such ions have very high ion­iza­tion cross sec­tions in col­li­sions with resid­ual gas par­ti­cles, yield­ing in beam loss and a sub­se­quent pres­sure rise via ion im­pact stim­u­lated gas des­orp­tion. To re­duce the des­orp­tion yield, room tem­per­a­ture ion­catcher have been in­stalled, which pro­vide low des­orp­tion sur­faces. Sim­u­la­tions in­clud­ing cryo­genic sur­faces show, that their high stick­ing prob­a­bil­ity pre­vents the vac­uum sys­tem from pres­sure built-ups dur­ing op­er­a­tion. Such, the op­er­a­tion with heavy ion beams can be sta­bi­lized at higher heavy ion in­ten­si­ties, than solely with room tem­per­a­ture sur­faces. A pro­to­type ion­catcher con­tain­ing cryo­genic sur­faces has been de­vel­oped and built. The sur­faces are cooled by a com­mer­cial cold­head, which eas­ily al­lows this sys­tem being in­te­grated into the room tem­per­a­ture syn­chro­tron. The de­vel­op­ment and first lab­o­ra­tory tests in­clud­ing fast pres­sure mea­sure­ments of this sys­tem will be pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TUP06  
About • Received ※ 21 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 10 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP07 Efficient Heavy Ion Acceleration with High Brilliance rfq, emittance, brilliance, cavity 83
 
  • C. Zhang
    GSI, Darmstadt, Germany
  • H. Podlech
    IAP, Frankfurt am Main, Germany
 
  It is chal­leng­ing to re­al­ize an ef­fi­cient and bril­liant RFQ for ac­cel­er­at­ing high cur­rent heavy ion beams, as space charge ef­fects are most pro­nounced at the low en­ergy end. Here ’ef­fi­cient’ means an as short as pos-sible ac­cel­er­at­ing struc­ture with min­i­mum RF power con­sump­tion, while ’bril­liant’ means high beam trans­mis­sion and low emit­tance growth. Using the > 9 m long HSI RFQ ac­cel­er­a­tor, one of the longest RFQs in the world, as an ex­am­ple, a promis­ing so­lu­tion has been pre­sented.  
poster icon Poster TUP07 [1.134 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TUP07  
About • Received ※ 21 June 2022 — Accepted ※ 10 August 2022 — Issue date ※ 19 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP10 High Power Tests of a New 4-Rod RFQ with Focus on Thermal Stability rfq, experiment, controls, MMI 93
 
  • S.R. Wagner, D. Koser, H. Podlech
    IAP, Frankfurt am Main, Germany
  • M. Basten
    GSI, Darmstadt, Germany
  • M. Basten
    HIM, Mainz, Germany
  • H. Podlech
    HFHF, Frankfurt am Main, Germany
 
  Due to strong lim­i­ta­tions re­gard­ing op­er­a­tional sta­bil­ity of the ex­ist­ing HLI-RFQ a new de­sign and pro­to­type were com­mis­sioned. Three main prob­lems were ob­served at the ex­ist­ing RFQ: A strong ther­mal sen­si­tiv­ity, mod­u­lated re­flected power, and in­suf­fi­cient sta­bil­ity of the con­tact springs con­nect­ing the stems with the tun­ing plates. Al­though the last prob­lem was eas­ily solved, the first two re­mained and greatly hin­dered op­er­a­tions. To re­solve this issue and en­sure sta­ble in­jec­tion into the HLI, a new RFQ-pro­to­type, op­ti­mized in terms of vi­bra­tion sup­pres­sion and cool­ing ef­fi­ciency, was de­signed at the In­sti­tute of Ap­plied Physics (IAP) of Goethe Uni­ver­sity Frank­furt. To test the per­for­mance of this pro­to­type, high power tests with more than 25 kW/m were per­formed at GSI. Dur­ing those, it was pos­si­ble to demon­strate op­er­a­tional sta­bil­ity in terms of ther­mal load and me­chan­i­cal vi­bra­tions, cal­cu­lat­ing the ther­mal de­tun­ing, and proof the re­li­a­bil­ity of the pro­posed de­sign.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TUP10  
About • Received ※ 21 June 2022 — Revised ※ 10 August 2022 — Accepted ※ 30 September 2022 — Issue date ※ 30 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP11 Upgrade and Operation of the ATLAS Radiation Interlock System (ARIS) radiation, controls, Linux, PLC 96
 
  • B.R. Blomberg, B. Back, K.J. Bunnell, J.A. Clark, M.R. Hendricks, C.E. Peters, J. Reyna, G. Savard, D. Stanton, L. Weber
    ANL, Lemont, Illinois, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE-AC02-06CH11357.
ATLAS (the Ar­gonne Tan­dem Linac Ac­cel­er­a­tor Sys-tem) is a su­per­con­duct­ing heavy ion ac­cel­er­a­tor which can ac­cel­er­ate nearly all sta­ble, and some un­sta­ble, iso-topes be­tween hy­dro­gen and ura­nium. Prompt ra­di­a­tion fields from gamma and or neu­tron are typ­i­cally below 1 rem/hr at 30 cm, but are per­mit­ted up to 300 rem/hr at 30 cm. The orig­i­nal ATLAS Ra­di­a­tion In­ter­lock Sys­tem (ARIS), here­after re­ferred to as ARIS 1.0 was in­stalled 30 years ago. While it has been a func­tional crit­i­cal safe-ty sys­tem, its age has ex­posed the fa­cil­ity to high risk of tem­po­rary shut­down due to fail­ure of ob­so­lete compo-nents. Top­ics dis­cussed will be ar­chi­tec­ture, hard­ware im­prove­ments, func­tional im­prove­ments, and op­er­a­tion per­mit­ting per­son­nel ac­cess to areas with low lev­els of ra­di­a­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TUP11  
About • Received ※ 30 June 2022 — Revised ※ 10 August 2022 — Accepted ※ 04 September 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1I3 FRIB Commissioning linac, target, MMI, experiment 118
 
  • P.N. Ostroumov, F. Casagrande, K. Fukushima, K. Hwang, M. Ikegami, T. Kanemura, S.H. Kim, S.M. Lidia, G. Machicoane, T. Maruta, D.G. Morris, A.S. Plastun, H.T. Ren, J. Wei, T. Xu, T. Zhang, Q. Zhao, S. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
The Fa­cil­ity for Rare Iso­tope Beams (FRIB), a major nu­clear physics fa­cil­ity for re­search with fast, stopped and reac­cel­er­ated rare iso­tope beams, was suc­cess­fully com­mis­sioned and is in op­er­a­tion. The ac­cel­er­a­tion of Xe, Kr, and Ar ion beams above 210 MeV/u using all 46 cry­omod­ules with 324 su­per­con­duct­ing cav­i­ties was demon­strated. Sev­eral key tech­nolo­gies were suc­cess­ful-ly de­vel­oped and im­ple­mented for the world’s high­est en­ergy con­tin­u­ous wave heavy ion beams, such as full-scale cryo­gen­ics and su­per­con­duct­ing ra­diofre­quency res­onator sys­tem, strip­ping of heavy ions with a thin liq­uid lithium film, and si­mul­ta­ne­ous ac­cel­er­a­tion of mul­ti­ple-charge-state heavy ion beams. In De­cem­ber 2021, we demon­strated the pro­duc­tion and iden­ti­fi­ca­tion of 84Se iso­topes and, in Jan­u­ary 2022, com­mis­sioned the FRIB frag­ment sep­a­ra­tor by de­liv­er­ing a 210 MeV/u argon beam to the sep­a­ra­tor’s focal plane. The first two user ex­per­i­ments with pri­mary 48Ca and 82Se beams have been suc­cess­fully con­ducted in May-June 2022.
 
slides icon Slides WE1I3 [6.543 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-WE1I3  
About • Received ※ 21 June 2022 — Revised ※ 29 June 2022 — Accepted ※ 10 August 2022 — Issue date ※ 29 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1C3 Automation of RF and Cryomodule Operation at FRIB cavity, controls, SRF, linac 136
 
  • S. Zhao, E. Bernal, W. Chang, E. Daykin, E. Gutierrez, W. Hartung, S.H. Kim, S.R. Kunjir, T.L. Larter, D.G. Morris, J.T. Popielarski, H.T. Ren, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The Fa­cil­ity for Rare Iso­tope Beams (FRIB) has been com­mis­sioned, with rare iso­topes first pro­duced in De­cem­ber 2021 and first user ex­per­i­ments con­ducted in May 2022. The FRIB dri­ver lin­ear ac­cel­er­a­tor (linac) uses 6 room tem­per­a­ture cav­i­ties, 324 su­per­con­duct­ing cav­i­ties, and 69 su­per­con­duct­ing so­le­noids to ac­cel­er­ate ions to more than 200 MeV/nu­cleon. Be­cause of the large scale, au­toma­tion is es­sen­tial for re­li­able linac op­er­a­tion with high avail­abil­ity. Au­toma­tion mea­sures im­ple­mented dur­ing linac com­mis­sion­ing in­clude turn-on of the cav­i­ties and so­le­noids, turn-on and fast re­cov­ery for room tem­per­a­ture de­vices, and emer­gency shut down of linac de­vices. Ad­di­tional au­to­mated tasks in­clude con­di­tion­ing of mul­ti­pact­ing bar­ri­ers in the cav­i­ties and cal­i­bra­tion of the con­trol valves for the pneu­matic tuners. To en­sure a smooth tran­si­tion to op­er­a­tions, we are cur­rently work­ing on real-time health mon­i­tor­ing of the linac cry­omod­ules, in­clud­ing crit­i­cal sig­nals such as X-ray lev­els, RF cou­pler tem­per­a­tures, and cryo­genic pa­ra­me­ters. In this paper, we will de­scribe our au­toma­tion pro­ce­dures, the im­ple­men­ta­tion de­tails, and the ex­pe­ri­ence we gained.
 
slides icon Slides TH1C3 [1.966 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH1C3  
About • Received ※ 21 June 2022 — Revised ※ 25 July 2022 — Accepted ※ 10 August 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH3C2 Alternating Phase Focusing Based IH DTL for Heavy Ion Application cavity, focusing, heavy-ion, linac 162
 
  • S. Lauber, K. Aulenbacher, W.A. Barth, M. Basten, C. Burandt, F.D. Dziuba, P. Forck, V. Gettmann, T. Kürzeder, J. List, M. Miski-Oglu, A. Rubin, S. Yaramyshev
    GSI, Darmstadt, Germany
  • K. Aulenbacher, W.A. Barth, M. Basten, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, S. Yaramyshev
    HIM, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba, S. Lauber, J. List
    KPH, Mainz, Germany
  • M. Droba, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • H. Podlech
    HFHF, Frankfurt am Main, Germany
 
  The con­tin­u­ous wave (CW) op­er­ated HElmholtz LIn­ear AC­cel­er­a­tor (HE­LIAC) is going to reach the next mile­stone with the com­mis­sion­ing of the su­per­con­duct­ing (SC) Ad­vanced Demon­stra­tor cry­omod­ule, com­pris­ing four SC Cross­bar H-mode (CH) cav­i­ties and SC steerer mag­nets. In par­al­lel with the com­mis­sion­ing of the SC main ac­cel­er­a­tor, the nor­mal con­duct­ing in­jec­tor con­sist­ing of an ECR ion source, a RFQ and two In­ter­dig­i­tal H-mode (IH) cav­i­ties will be built based on an Al­ter­nat­ing Phase Fo­cus­ing (APF) beam dy­nam­ics scheme. Both IH cav­i­ties will pro­vide a beam en­ergy gain from 300 keV/u to 1400 keV/u with a max­i­mum mass to charge ratio of 6, re­quir­ing only one ex­ter­nal quadru­pole triplet and beam steerer el­e­ments be­tween them. The APF con­cept al­lows sta­ble and ef­fec­tive beam trans­port with trans­verse and lon­gi­tu­di­nal fo­cus­ing, en­abling an ef­fi­cient and com­pact de­sign. Due to the strin­gent re­quire­ments of the APF con­cept on the volt­age dis­tri­b­u­tion and the CW op­er­a­tion, op­ti­miza­tion of each cav­ity in terms of RF, me­chan­i­cal and ther­mal prop­er­ties is cru­cial for suc­cess­ful op­er­a­tion of the HE­LIAC in­jec­tor. The cur­rent lay­out of the APF based and CW op­er­ated in­jec­tor will be pre­sented.  
slides icon Slides TH3C2 [1.603 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH3C2  
About • Received ※ 21 June 2022 — Revised ※ 04 July 2022 — Accepted ※ 10 August 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH3C3 Recent UNILAC Upgrade Activities heavy-ion, rfq, quadrupole, linac 166
 
  • U. Scheeler, W.A. Barth, M. Miski-Oglu, H. Vormann, M. Vossberg, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, M. Miski-Oglu, S. Yaramyshev
    HIM, Mainz, Germany
  • W.A. Barth
    KPH, Mainz, Germany
 
  The GSI UNI­LAC is the sec­tion of the GSI ac­cel­er­a­tor fa­cil­ity that has been in op­er­a­tion the longest. UNI­LAC is able to ac­cel­er­ate ions from hy­dro­gen to ura-nium up to 20 MeV (p+) and 13 MeV/u (ura­nium). The main focus of the re­cent up­grade mea­sures is to meet the FAIR re­quire­ments and to pro­vide re­li­able and long term beam op­er­a­tion con­di­tions. Be­sides post strip­per up­grade and up­grade of the UNI­LAC con­trols, a par­tic­u­lar at­ten-tion is paid to im­prove the per­for­mance of the High Cur­rent In­jec­tor (HSI) [1-7] and to in­ten­sify spare part man­age­ment for the age­ing ac­cel­er­a­tor. In order to en-sure op­er­a­tional re­li­a­bil­ity, the main focus lies on ex­ten-sive spare part man­age­ment and re­place­ment of out­dated equip­ment. Mod­i­fied beam dy­nam­ics de­sign for the fron­tend sys­tem and the use of ad­vanced tech­nolo­gies are needed to im­prove the UNI­LAC per­for­mance. Among other things, a mod­i­fied Low and Medium En­ergy Beam Trans­port sec­tion de­sign for the HSI and in­stal­la­tion of re­li­able (non-de­struc­tive) high in­ten­sity beam di­ag­nos-tics de­vices are in progress. This paper ad­dresses the sta­tus of cur­rent de­vel­op­ment ef­forts and spe­cific plans for the UNI­LAC up­grade.  
slides icon Slides TH3C3 [1.595 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH3C3  
About • Received ※ 20 June 2022 — Revised ※ 28 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH4C3 High Intensity Proton Beams at GSI (Heavy Ion) UNILAC proton, linac, heavy-ion, ion-source 170
 
  • W.A. Barth, M. Miski-Oglu, U. Scheeler, H. Vormann, M. Vossberg, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, M. Miski-Oglu
    HIM, Mainz, Germany
 
  A sig­nif­i­cant part of the ex­per­i­men­tal pro­gram at FAIR is ded­i­cated to pbar physics re­quir­ing a high num­ber of cooled pbars per hour. The pri­mary pro­ton beam has to be pro­vided by a 70 MeV pro­ton linac fol­lowed by two syn­chro­trons. The new FAIR pro­ton linac will de­liver a pulsed high in­ten­sity pro­ton beam of up to 35 mA of 36 µs du­ra­tion at a rep­e­ti­tion rate of 4 Hz. The GSI heavy ion linac (UNI­LAC) is able to de­liver in­tense heavy ion beam for in­jec­tion into SIS18, but it is not suit­able for FAIR rel­e­vant pro­ton beam op­er­a­tion. In an ad­vanced ma­chine in­ves­ti­ga­tion pro­gram it could be shown, that the UNI­LAC is able to pro­vide for suf­fi­cient high in­ten­si­ties of CH3-beam, cracked (and stripped) in a su­per­sonic ni­tro­gen gas jet into pro­tons and car­bon ions. This new op­er­a­tional ap­proach re­sults in up to 3 mA of pro­ton in­ten­sity at a max­i­mum beam en­ergy of 20 MeV, 100 µs pulse du­ra­tion and a rep. rate of 4 Hz. For some time now, UNI­LAC pro­ton beam op­er­a­tion with higher in­ten­si­ties has been of­fered as stan­dard for users. Re­cent linac beam mea­sure­ments will be pre­sented, show­ing that the UNI­LAC is able to bridge the time until the FAIR-pro­ton linac de­liv­ers high-in­ten­sity pro­ton beams.  
slides icon Slides TH4C3 [3.539 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH4C3  
About • Received ※ 11 June 2022 — Revised ※ 28 June 2022 — Accepted ※ 10 August 2022 — Issue date ※ 29 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)