Keyword: rfq
Paper Title Other Keywords Page
MO3I1 Developments towards a Compact Carbon Ion Linac for Cancer Therapy linac, proton, cavity, acceleration 14
 
  • B. Mustapha, D.A. Meyer, A. Nassiri, Y. Yang
    ANL, Lemont, Illinois, USA
  • R.B. Agustsson, A. Araujo, S.V. Kutsaev, A.Yu. Smirnov
    RadiaBeam, Los Angeles, California, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and Office of High Energy Physics SBIR/STTR Award DE-SC0015717.
Hadron therapy offers improved localization of the dose to the tumor and much improved sparing of healthy tissues, compared to traditional X-ray therapy. Combined proton/carbon therapy can achieve the most precise dose confinement to the tumor. Moreover, recent studies indicated that adding FLASH capability to such system may provide significant breakthrough in cancer treatment. The Advanced Compact Carbon Ion Linac (ACCIL) is a conceptual design for a compact ion linac based on high-gradient accelerating structures operating in the S-band frequency range. Thanks to this innovation, the footprint of this accelerator is only 45 m, while its capabilities are well beyond the current state of the art for hadron therapy machines and include: operation up to 1000 pulses per second, pulse to pulse energy variation to treat moving tumors in layer-by-layer regime. ACCIL is capable of accelerating all ions with mass-to-charge ratio A/q ~ 2 to a full energy of 450 MeV/u, and that includes protons, helium, carbon, oxygen and neon. With very short beam pulses of ~ 1 ’s and high instantaneous dose delivery, ACCIL is capable of delivering FLASH-like doses (>100 Gy/sec) for most ion species. In close collaboration between Argonne and Radiabeam, we have developed different design options and prototypes of the high-gradient structures needed for ACCIL. Following an overview of the ACCIL design and its capabilities, the most recent results from the high-gradient structure R&D and future plans will be presented and discussed.
 
slides icon Slides MO3I1 [3.259 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-MO3I1  
About • Received ※ 27 June 2022 — Revised ※ 10 August 2022 — Accepted ※ 05 September 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU3C3 Preparation of Low-Energy Heavy Ion Beams in a Compact Linear Accelerator/Decelerator experiment, injection, electron, ion-source 63
 
  • Z. Andelkovic, S. Fedotova, W. Geithner, P. Gerhard, F. Herfurth, I. Kraus, M.T. Maier, A. Reiter, G. Vorobyev
    GSI, Darmstadt, Germany
  • N.S. Stallkamp
    IKF, Frankfurt am Main, Germany
 
  High precision tests of fundamental theories can often unfold their full potential only by using highly charged ions (HCI) at very low energies. Although in light of the envisaged energies at FAIR, experiments in the keV to MeV range may sound like backpedaling, these two techniques are in fact complementary, since the production of heavy HCI is virtually impossible without prior acceleration and electron stripping. However, subsequent preparation, transport, storage and detection of low-energy HCI bring new, surprising sets of problems and limitations. Here we will give an overview of the CRYRING@ESR local injector and the HITRAP linear decelerator. These two facilities consist out of one or two accelerator or decelerator stages, with a total length of around 10 meters, making them "compact" in comparison to other GSI accelerators. The following sections describe their main design parameters, the achieved ion numbers, challenges of beam detection, as well as some special features such as multi-turn injection and single-shot energy analyzers. The conclusion will present the current status and will also give an outlook of the planned applications of low-energy ions at the FAIR facility.  
slides icon Slides TU3C3 [3.244 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TU3C3  
About • Received ※ 20 June 2022 — Revised ※ 01 July 2022 — Accepted ※ 01 July 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP04 New Method for Overcoming Dipole Effects of 4-Rod RFQs dipole, impedance, ECR, simulation 72
 
  • S. Wunderlich, C. Zhang
    GSI, Darmstadt, Germany
 
  A new design of a 4-rod RFQ has been developed and simulated. In contrast to conventional designs, it uses asymmetrical stem geometry in the vertical-longitudinal plane. The effect on dipole fields for different geometrical parameters were examined and will be discussed.  
poster icon Poster TUP04 [0.300 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TUP04  
About • Received ※ 21 June 2022 — Revised ※ 19 July 2022 — Accepted ※ 10 August 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP07 Efficient Heavy Ion Acceleration with High Brilliance emittance, brilliance, cavity, operation 83
 
  • C. Zhang
    GSI, Darmstadt, Germany
  • H. Podlech
    IAP, Frankfurt am Main, Germany
 
  It is challenging to realize an efficient and brilliant RFQ for accelerating high current heavy ion beams, as space charge effects are most pronounced at the low energy end. Here ’efficient’ means an as short as pos-sible accelerating structure with minimum RF power consumption, while ’brilliant’ means high beam transmission and low emittance growth. Using the > 9 m long HSI RFQ accelerator, one of the longest RFQs in the world, as an example, a promising solution has been presented.  
poster icon Poster TUP07 [1.134 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TUP07  
About • Received ※ 21 June 2022 — Accepted ※ 10 August 2022 — Issue date ※ 19 September 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP08 RF Chopper for Prebunched Radioactive Ion Beams cavity, cryomodule, simulation, dipole 87
 
  • A.J. Gonzalez, A.S. Plastun
    FRIB, East Lansing, Michigan, USA
 
  An RF chopper system is being designed for the Re-Accelerator (ReA) linac at the Facility for Rare Isotope Beams (FRIB) at Michigan State University (MSU). The chopper system is designed to clean out satellite bunches and produce a 16.1 MHz bunch structure, which allows for time-of-flight separation of the isotopes. The chopper system’s location in the beamline is between the ReA3 and ReA6 cryomodules. In ReA, the beam can be prebunched at the frequency of 16.1 MHz and accelerated in a 80.5 MHz RFQ, producing four satellite bunches for every one high-intensity bunch. The chopper system includes an RF deflector operating at 64.4 MHz, which is the beat frequency of 80.5 MHz and 16.1 MHz. The deflector deflects every bunch to spatially separate high-intensity and satellite bunches. The beam trajectory is biased by a constant magnetic field to ensure the high-intensity bunches do not experience any total deflection. The kicked bunches are low in intensity and will be sent to a beam dump, resulting in a clean 16.1 MHz beam structure injected into the ReA6 cryomodule.  
poster icon Poster TUP08 [0.437 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TUP08  
About • Received ※ 20 June 2022 — Revised ※ 30 June 2022 — Accepted ※ 10 August 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP09 Tuning and RF Measurements of the LILAC RFQ emittance, linac, ion-source, pick-up 90
 
  • H. Podlech
    IAP, Frankfurt am Main, Germany
  • H. Höltermann, H. Hähnel, B. Koubek, U. Ratzinger
    BEVATECH, Frankfurt, Germany
 
  A new linac for the NICA ion collider is under con-struction for JINR at BEVATECH GmbH. As first cavity the 2.5 m long RFQ was manufactured. Within this length it accelerates particles with a mass to charge ratio up to three to an energy of 600 keV/u. The operation frequency is 162.5 MHz and the 4-Rod structure consists of 23 RF cells that need to be adjusted using tuning blocks in order to provide the required field distribution along the electrodes. The status of the manufacturing and the upcoming tuning process including the overall RF setup of the RFQ are summarized in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TUP09  
About • Received ※ 24 June 2022 — Revised ※ 27 June 2022 — Accepted ※ 10 August 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP10 High Power Tests of a New 4-Rod RFQ with Focus on Thermal Stability experiment, operation, controls, MMI 93
 
  • S.R. Wagner, D. Koser, H. Podlech
    IAP, Frankfurt am Main, Germany
  • M. Basten
    GSI, Darmstadt, Germany
  • M. Basten
    HIM, Mainz, Germany
  • H. Podlech
    HFHF, Frankfurt am Main, Germany
 
  Due to strong limitations regarding operational stability of the existing HLI-RFQ a new design and prototype were commissioned. Three main problems were observed at the existing RFQ: A strong thermal sensitivity, modulated reflected power, and insufficient stability of the contact springs connecting the stems with the tuning plates. Although the last problem was easily solved, the first two remained and greatly hindered operations. To resolve this issue and ensure stable injection into the HLI, a new RFQ-prototype, optimized in terms of vibration suppression and cooling efficiency, was designed at the Institute of Applied Physics (IAP) of Goethe University Frankfurt. To test the performance of this prototype, high power tests with more than 25 kW/m were performed at GSI. During those, it was possible to demonstrate operational stability in terms of thermal load and mechanical vibrations, calculating the thermal detuning, and proof the reliability of the proposed design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TUP10  
About • Received ※ 21 June 2022 — Revised ※ 10 August 2022 — Accepted ※ 30 September 2022 — Issue date ※ 30 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1I2 Reinforcement Learning and Bayesian Optimization for Ion Linac Operations controls, simulation, quadrupole, experiment 130
 
  • J.L. Martinez Marin, B.R. Blomberg, K.J. Bunnell, G.M. Dunn, E. Letcher, B. Mustapha, D. Stanton
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. This research used the ATLAS facility, which is a DOE Office of Nuclear Physics User Facility.
The use of artificial intelligence can significantly reduce the time needed to tune an accelerator system such as the Argonne Tandem Linear Accelerator System (ATLAS) where a new beam is tuned once or twice a week. After establishing automatic data collection procedures and having analysed the data, machine learning models were developed and tested to tune subsections of the linac. Models based on Reinforcement Learning (RL) and Bayesian Optimization (BO) were developed, their respec-tive results are discussed and compared. RL and BO are well known AI techniques, often used for control systems. The results were obtained for a subsection of ATLAS that contains complex elements such as the radio-frequency quadrupole (RFQ). The models will be later generalized to the whole ATLAS linac, and similar models can be devel-oped for any accelerator with a modern control system.
 
slides icon Slides TH1I2 [4.617 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH1I2  
About • Received ※ 09 July 2022 — Revised ※ 10 August 2022 — Accepted ※ 19 September 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH3I1 A Novel CW RFQ for Exotic and Stable Beams alignment, vacuum, cavity, emittance 156
 
  • A. Palmieri, L. Bellan, M. Comunian, L. Ferrari, A. Pisent, C.R. Roncolato
    INFN/LNL, Legnaro (PD), Italy
 
  The SPES RFQ is designed in order to accelerate beams in CW with A/q ratios from 3 to 7 from the Charge Breeder through the MRMS and the selection and injection lines up to the MEBT (Medium Energy Beam Transport). The RFQ is composed of 6 modules about 1.2 m long each. Each module is basically composed of a Stainless Steel Tank and four OFE Copper Electrodes. A copper layer is plated on the tank inner surface and a spring joint between tank and electrode is used in order to seal the RF. In this contribution, the main design steps of the RFQ, the construction concepts and the results obtained for the first assembled modules are shown.  
slides icon Slides TH3I1 [7.615 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH3I1  
About • Received ※ 20 June 2022 — Revised ※ 28 June 2022 — Accepted ※ 10 August 2022 — Issue date ※ 29 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH3C3 Recent UNILAC Upgrade Activities operation, heavy-ion, quadrupole, linac 166
 
  • U. Scheeler, W.A. Barth, M. Miski-Oglu, H. Vormann, M. Vossberg, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, M. Miski-Oglu, S. Yaramyshev
    HIM, Mainz, Germany
  • W.A. Barth
    KPH, Mainz, Germany
 
  The GSI UNILAC is the section of the GSI accelerator facility that has been in operation the longest. UNILAC is able to accelerate ions from hydrogen to ura-nium up to 20 MeV (p+) and 13 MeV/u (uranium). The main focus of the recent upgrade measures is to meet the FAIR requirements and to provide reliable and long term beam operation conditions. Besides post stripper upgrade and upgrade of the UNILAC controls, a particular atten-tion is paid to improve the performance of the High Current Injector (HSI) [1-7] and to intensify spare part management for the ageing accelerator. In order to en-sure operational reliability, the main focus lies on exten-sive spare part management and replacement of outdated equipment. Modified beam dynamics design for the frontend system and the use of advanced technologies are needed to improve the UNILAC performance. Among other things, a modified Low and Medium Energy Beam Transport section design for the HSI and installation of reliable (non-destructive) high intensity beam diagnos-tics devices are in progress. This paper addresses the status of current development efforts and specific plans for the UNILAC upgrade.  
slides icon Slides TH3C3 [1.595 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH3C3  
About • Received ※ 20 June 2022 — Revised ※ 28 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)