Keyword: MMI
Paper Title Other Keywords Page
MO4I2 Liquid Lithium Charge Stripper Commissioning with Heavy Ion Beams and Early Operations of FRIB Strippers operation, heavy-ion, linac, vacuum 31
 
  • T. Kanemura, N.K. Bultman, R. Madendorp, F. Marti, T. Maruta, Y. Momozaki, J.A. Nolen, P.N. Ostroumov, A.S. Plastun, H.T. Ren, A. Taylor, J. Wei, Q. Zhao
    FRIB, East Lansing, Michigan, USA
  • M.J. LaVere
    MSU, East Lansing, Michigan, USA
  • Y. Momozaki, J.A. Nolen
    ANL, Lemont, Illinois, USA
 
  Funding: This work is supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB) at Michi-gan State University is a 400 kW heavy ion linear accel-erator. Heavy ion accelerators normally include a charge stripper to remove electrons from the beams to increase the charge state of the beams thus to increase the energy gain. Thin carbon foils have been the traditional charge stripper but are limited in power density by the damage they suffer (sublimation and radiation damage) and con-sequently short lifetimes. Because of the high beam pow-er, FRIB had decided to use a liquid lithium charge strip-per (LLCS), a self-replenishing medium that is free from radiation damage. FRIB recently commissioned a LLCS with heavy ion beams (36Ar, 48Ca, 124Xe and 238U beams at energies of 17-20 MeV/u). Since there had been no exper-imental data available of charge stripping characteristics of liquid lithium, this was the first demonstration of charge stripping by a LLCS. The beams were successfully stripped by the LLCS with slightly lower charge states than the carbon foils of the same mass thickness. The LLCS started serving the charge stripper for FRIB user operations with a backup rotating carbon foil charge stripper. FRIB has become the world’s first accelerator that utilizes a LLCS.
 
slides icon Slides MO4I2 [6.337 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-MO4I2  
About • Received ※ 26 June 2022 — Revised ※ 27 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU2I2 Development and Commissioning of the K500 Superconducting Heavy Ion Cyclotron cyclotron, cavity, extraction, resonance 46
 
  • S. Som, A. Bandyopadhyay, S. Bandyopadhyay, S. Bhattacharya, P. Bhattacharyya, T. Bhattacharyya, U. Bhunia, N. Chaddha, J. Debnath, M.K. Dey, A. Dutta Gupta, S. Ghosh, A. Mandal, P.Y. Nabhiraj, C. Nandi, Z.A. Naser, S. Pal, S. Pal, U. Panda, J. Pradhan, A. Roy, S. Saha, S. Seth, S.K. Thakur
    VECC, Kolkata, India
 
  Funding: Work supported by the DAE, Government of India.
The K500 Superconducting Cyclotron (SCC) has been developed indigenously and commissioned at VECC. The three-phase Radio-Frequency (RF) system of SCC, consists of three half-wave cavities placed vertically 120 deg. apart. Each half-wave cavity has two quarter-wave cylindrical cavities tied together at the centre and symmetrically placed about median plane of the cyclotron. Each quarter-wave cavity is made up of a short circuited non-uniform coaxial transmission line (called "dee-stem") terminated by accelerating electrode (called "Dee"). The SCC, operating in the range 9 to 27 MHz, has amplitude and phase stability within 100 ppm and 0.1 deg. respectively. The overview of all the subsystems of the cyclotron along with low-level RF (LLRF), high and low power RF amplifiers, cavity analysis, absolute Dee voltage measurement using X-ray method, amplitude and phase control loops will be presented in the talk. The commissioning of the cyclotron with first harmonic Nitrogen4+ beam extracted at 252 MeV, while operating at 14 MHz RF frequency, along with the correction of first harmonic magnetic field error by repositioning the cryostat within 120 micron accuracy, will be discussed briefly.
 
slides icon Slides TU2I2 [18.037 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TU2I2  
About • Received ※ 15 June 2022 — Revised ※ 27 June 2022 — Accepted ※ 10 August 2022 — Issue date ※ 05 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP10 High Power Tests of a New 4-Rod RFQ with Focus on Thermal Stability rfq, experiment, operation, controls 93
 
  • S.R. Wagner, D. Koser, H. Podlech
    IAP, Frankfurt am Main, Germany
  • M. Basten
    GSI, Darmstadt, Germany
  • M. Basten
    HIM, Mainz, Germany
  • H. Podlech
    HFHF, Frankfurt am Main, Germany
 
  Due to strong limitations regarding operational stability of the existing HLI-RFQ a new design and prototype were commissioned. Three main problems were observed at the existing RFQ: A strong thermal sensitivity, modulated reflected power, and insufficient stability of the contact springs connecting the stems with the tuning plates. Although the last problem was easily solved, the first two remained and greatly hindered operations. To resolve this issue and ensure stable injection into the HLI, a new RFQ-prototype, optimized in terms of vibration suppression and cooling efficiency, was designed at the Institute of Applied Physics (IAP) of Goethe University Frankfurt. To test the performance of this prototype, high power tests with more than 25 kW/m were performed at GSI. During those, it was possible to demonstrate operational stability in terms of thermal load and mechanical vibrations, calculating the thermal detuning, and proof the reliability of the proposed design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TUP10  
About • Received ※ 21 June 2022 — Revised ※ 10 August 2022 — Accepted ※ 30 September 2022 — Issue date ※ 30 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1I3 FRIB Commissioning linac, target, operation, experiment 118
 
  • P.N. Ostroumov, F. Casagrande, K. Fukushima, K. Hwang, M. Ikegami, T. Kanemura, S.H. Kim, S.M. Lidia, G. Machicoane, T. Maruta, D.G. Morris, A.S. Plastun, H.T. Ren, J. Wei, T. Xu, T. Zhang, Q. Zhao, S. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
The Facility for Rare Isotope Beams (FRIB), a major nuclear physics facility for research with fast, stopped and reaccelerated rare isotope beams, was successfully commissioned and is in operation. The acceleration of Xe, Kr, and Ar ion beams above 210 MeV/u using all 46 cryomodules with 324 superconducting cavities was demonstrated. Several key technologies were successful-ly developed and implemented for the world’s highest energy continuous wave heavy ion beams, such as full-scale cryogenics and superconducting radiofrequency resonator system, stripping of heavy ions with a thin liquid lithium film, and simultaneous acceleration of multiple-charge-state heavy ion beams. In December 2021, we demonstrated the production and identification of 84Se isotopes and, in January 2022, commissioned the FRIB fragment separator by delivering a 210 MeV/u argon beam to the separator’s focal plane. The first two user experiments with primary 48Ca and 82Se beams have been successfully conducted in May-June 2022.
 
slides icon Slides WE1I3 [6.543 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-WE1I3  
About • Received ※ 21 June 2022 — Revised ※ 29 June 2022 — Accepted ※ 10 August 2022 — Issue date ※ 29 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2I1 The New GANIL Beams: Commissioning of SPIRAL 2 Accelerator and Resent Developments linac, experiment, cyclotron, ion-source 124
 
  • H. Franberg Delahaye
    GANIL, Caen, France
 
  The GANIL installation at Caen in France has been operating with warm temperatures cyclotrons for heavy ion beam physics since 1983. The accelerated stables beams widely ranges from Carbon to Uranium beams. Low energy and post accelerated radioactive ion beams are also being provided. The GANIL laboratory has newly increased their different ion beams available with the installation and commissioning of a superconducting linear accelerator ’ SPIRAL 2 and its experimental areas. The construction started in 2011, the first beam was extracted at low energy in late 2014 with pre-acceleration in 2017 and since 2019 the new installation delivers beam for nuclear physics experiments. This paper will cover the commissioning of the SPIRAL 2 installation at GANIL with its superconducting LINAC - but also the latest development of stable and radioactive beams at the cyclotrons.  
slides icon Slides WE2I1 [7.801 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-WE2I1  
About • Received ※ 20 June 2022 — Revised ※ 10 August 2022 — Accepted ※ 25 September 2022 — Issue date ※ 28 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH2C4 Signal Estimation and Analyzing of Cold Button BPMs for a Low-Beta Helium/Proton Superconducting Linac proton, linac, electron, electronics 150
 
  • Y. Zhang, X.J. Hu, H. Jia, Z.X. Li, S.H. Liu, H.M. Xie
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Funding: This work was supported by National Natural Science Foundation of China (Grant No. 11675237) and the 2018 ’Western Light’ Talents Training Program of Chinese Academy of Sciences.
We develop a formula including the low-beta effect and the influence of long cable issues for estimating the original signal of cold BPMs. A good agreement between the numerical and the measured signal with regard to two kinds of beam commissioning, helium and proton beams, in a low-beta helium and proton superconducting linac, proves that the developed numerical model could accurately estimate the output signal of cold button BPMs. Analysing the original signal between the first and the last cold BPM in the cryomodule, it is found that the signal voltage in the time domain is increased with the accelerated beam energy. However, the amplitude spectra in the frequency domain has more high frequency Fourier components and the amplitude at the first harmonic frequency reduces a lot. It results in a decline of the summed value from the BPM electronics. The decline is not proportional to a variety of the beam intensity. This is the reason why BPMs give only relative intensity and not absolute value for low-beta beams with a Gaussian distribution.
 
slides icon Slides TH2C4 [6.197 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH2C4  
About • Received ※ 14 June 2022 — Revised ※ 10 August 2022 — Accepted ※ 28 September 2022 — Issue date ※ 29 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)