Keyword: heavy-ion
Paper Title Other Keywords Page
MO1C3 High Voltage Upgrade of the 14UD Tandem Accelerator electron, simulation, operation, acceleration 1
 
  • T.B. Tunningley, S.T. Battisson, A. Cooper, J.K. Heighway, D.J. Hinde, C. Kafer, T. Kitchen, P. Linardakis, N.R. Lobanov, C. Notthoff, T. Tempra, B. Tranter, R. Tranter
    Research School of Physics and Engineering, Australian National University, Canberra, Australian Capitol Territory, Australia
  • R.A. Bosch
    UW-Madison/SRC, Madison, Wisconsin, USA
  • J.E. Raatz
    NEC, Middleton, Wisconsin, USA
 
  The 14UD at the Aus­tralian Na­tional Uni­ver­sity’s Heavy Ion Ac­cel­er­a­tor Fa­cil­ity (HIAF) op­er­ated at a max­i­mum volt­age of 15.5 MV after the in­stal­la­tion of tubes with a com­pressed geom­e­try in the 1990s. In re­cent years, the per­for­mance of the ac­cel­er­a­tor has shown a grad­ual de­cline to a max­i­mum op­er­a­tion volt­age of ~14.5 MV. There are some fun­da­men­tal fac­tors that limit the high volt­age per­for­mance, such as SF6 gas pres­sure, field en­hance­ment due to triple junc­tions and total volt­age ef­fect. In 2019 ANU ini­ti­ated the fea­si­bil­ity study of avail­able op­tions to up­grade the en­tire pop­u­la­tion of sup­port­ing posts, ac­cel­er­a­tion tubes and grad­ing re­sis­tors. In this paper we will dis­cuss the pre­ferred tech­nolo­gies and strate­gies for suc­cess­ful im­ple­men­ta­tion of this de­vel­op­ment. The cho­sen de­sign is based on NEC tubes with mag­netic elec­tron sup­pres­sion and min­i­mized steer­ing of ion beam. The new grad­ing re­sis­tors mount­ing op­tions and im­proved volt­age dis­tri­b­u­tion along ac­cel­er­a­tor col­umn time­line will be dis­cussed.  
slides icon Slides MO1C3 [28.718 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-MO1C3  
About • Received ※ 25 May 2022 — Revised ※ 27 June 2022 — Accepted ※ 10 August 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO3I3 Heavy Ion Stripping target, operation, synchrotron, linac 24
 
  • P. Gerhard, M.T. Maier
    GSI, Darmstadt, Germany
 
  Ion strip­ping is pri­mar­ily an es­sen­tial tech­nique for heavy ion ac­cel­er­a­tors in order to reach higher beam en­er­gies within rea­son­able size and bud­get lim­its. Due to the na­ture of the strip­ping process, the re­sult­ing ion beam con­tains ions of dif­fer­ent charge states. There­fore, high beam loss is typ­i­cally as­so­ci­ated, mak­ing the net strip­ping ef­fi­ciency one of the de­ci­sive el­e­ments of the over­all per­for­mance of an ac­cel­er­a­tor or fa­cil­ity. Sev­eral tech­ni­cal im­ple­men­ta­tions of strip­pers have been and are still being de­vel­oped in order to ob­tain op­ti­mal strip­ping for dif­fer­ent ions and beam en­er­gies by em­ploy­ing dif­fer­ent kinds of strip­ping tar­gets, namely gaseous, solid and more re­cently fluid ma­te­ri­als. High beam in­ten­si­ties re­sult­ing in pro­hib­i­tive en­ergy de­po­si­tion and tar­get de­struc­tion are chal­leng­ing. Op­ti­miz­ing a strip­per may po­ten­tially in­crease the over­all per­for­mance by a large fac­tor with less ef­fort than other ac­tions. This gave rise to the pulsed gas strip­per pro­ject at the GSI UNI­LAC. This talk will give an overview of dif­fer­ent strip­pers at GSI and be­yond. The sec­ond part will give a de­tailed re­port on the in­tro­duc­tion of hy­dro­gen at the GSI gas strip­per.  
slides icon Slides MO3I3 [53.513 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-MO3I3  
About • Received ※ 21 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 10 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO4I2 Liquid Lithium Charge Stripper Commissioning with Heavy Ion Beams and Early Operations of FRIB Strippers operation, MMI, linac, vacuum 31
 
  • T. Kanemura, N.K. Bultman, R. Madendorp, F. Marti, T. Maruta, Y. Momozaki, J.A. Nolen, P.N. Ostroumov, A.S. Plastun, H.T. Ren, A. Taylor, J. Wei, Q. Zhao
    FRIB, East Lansing, Michigan, USA
  • M.J. LaVere
    MSU, East Lansing, Michigan, USA
  • Y. Momozaki, J.A. Nolen
    ANL, Lemont, Illinois, USA
 
  Funding: This work is supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Fa­cil­ity for Rare Iso­tope Beams (FRIB) at Michi-gan State Uni­ver­sity is a 400 kW heavy ion lin­ear ac­cel-er­a­tor. Heavy ion ac­cel­er­a­tors nor­mally in­clude a charge strip­per to re­move elec­trons from the beams to in­crease the charge state of the beams thus to in­crease the en­ergy gain. Thin car­bon foils have been the tra­di­tional charge strip­per but are lim­ited in power den­sity by the dam­age they suf­fer (sub­li­ma­tion and ra­di­a­tion dam­age) and con-se­quently short life­times. Be­cause of the high beam pow-er, FRIB had de­cided to use a liq­uid lithium charge strip-per (LLCS), a self-re­plen­ish­ing medium that is free from ra­di­a­tion dam­age. FRIB re­cently com­mis­sioned a LLCS with heavy ion beams (36Ar, 48Ca, 124Xe and 238U beams at en­er­gies of 17-20 MeV/u). Since there had been no ex­per-imen­tal data avail­able of charge strip­ping char­ac­ter­is­tics of liq­uid lithium, this was the first demon­stra­tion of charge strip­ping by a LLCS. The beams were suc­cess­fully stripped by the LLCS with slightly lower charge states than the car­bon foils of the same mass thick­ness. The LLCS started serv­ing the charge strip­per for FRIB user op­er­a­tions with a backup ro­tat­ing car­bon foil charge strip­per. FRIB has be­come the world’s first ac­cel­er­a­tor that uti­lizes a LLCS.
 
slides icon Slides MO4I2 [6.337 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-MO4I2  
About • Received ※ 26 June 2022 — Revised ※ 27 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP06 Cryogenic Surfaces in a Room Temperature SIS18 Ioncatcher vacuum, cryogenics, simulation, operation 79
 
  • L.H.J. Bozyk, S. Aumüller, P.J. Spiller
    GSI, Darmstadt, Germany
 
  For FAIR op­er­a­tion, the ex­ist­ing heavy ion syn­chro­tron SIS18 at GSI will be used as booster for the fu­ture SIS100. In order to reach the in­ten­sity goals, medium charge state heavy ions will be used. Un­for­tu­nately, such ions have very high ion­iza­tion cross sec­tions in col­li­sions with resid­ual gas par­ti­cles, yield­ing in beam loss and a sub­se­quent pres­sure rise via ion im­pact stim­u­lated gas des­orp­tion. To re­duce the des­orp­tion yield, room tem­per­a­ture ion­catcher have been in­stalled, which pro­vide low des­orp­tion sur­faces. Sim­u­la­tions in­clud­ing cryo­genic sur­faces show, that their high stick­ing prob­a­bil­ity pre­vents the vac­uum sys­tem from pres­sure built-ups dur­ing op­er­a­tion. Such, the op­er­a­tion with heavy ion beams can be sta­bi­lized at higher heavy ion in­ten­si­ties, than solely with room tem­per­a­ture sur­faces. A pro­to­type ion­catcher con­tain­ing cryo­genic sur­faces has been de­vel­oped and built. The sur­faces are cooled by a com­mer­cial cold­head, which eas­ily al­lows this sys­tem being in­te­grated into the room tem­per­a­ture syn­chro­tron. The de­vel­op­ment and first lab­o­ra­tory tests in­clud­ing fast pres­sure mea­sure­ments of this sys­tem will be pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TUP06  
About • Received ※ 21 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 10 August 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1C4 Cavity Designs for the CH3 to CH11 and Bellow Tuner Investigation of the Superconducting Heavy Ion Accelerator HELIAC cavity, SRF, simulation, niobium 140
 
  • T. Conrad, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • W.A. Barth, M. Basten, F.D. Dziuba, V. Gettmann, M. Heilmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, A. Rubin, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
 
  New CH-DTL cav­i­ties de­signs of the planned Helmholtz Lin­ear Ac­cel­er­a­tor (HE­LIAC) are de­vel­oped in col­lab­o­ra­tion of GSI, HIM and IAP Frank­furt. The in cw-mode op­er­at­ing linac with a final en­ergy of 7.3 MeV/u, is in­tended for var­i­ous ex­per­i­ments, in par­tic­u­lar with heavy ions at en­er­gies close to the Coulomb bar­rier for re­search on SHE. Twelve sc CH cav­i­ties are fore­seen, di­vided into four dif­fer­ent cryostats each equipped with two dy­namic bel­low tuner. After suc­cess­ful beam tests with CH0, CH3 to CH11 were de­signed. Based on the ex­pe­ri­ence gained so far, op­ti­miza­tions were made, which will lead to both an in­crease in per­for­mance in terms of re­duc­ing the peak fields lim­it­ing su­per­con­duc­tiv­ity and a re­duc­tion in man­u­fac­tur­ing costs and time. In order to op­ti­mize man­u­fac­tur­ing, at­ten­tion was paid to de­sign many parts of the cav­ity, such as lids, spokes, tuner and he­lium shell, with the same geo­met­ri­cal di­men­sions. In ad­di­tion, a tuner test rig was de­vel­oped, which will be used to in­ves­ti­gate the me­chan­i­cal prop­er­ties of the bel­low tuner. For this pur­pose, dif­fer­ent sim­u­la­tions were made in order to re­al­ize con­di­tions as close as pos­si­ble to re­al­ity in the test rig.  
slides icon Slides TH1C4 [6.439 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH1C4  
About • Received ※ 27 June 2022 — Revised ※ 19 July 2022 — Accepted ※ 10 August 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH3C2 Alternating Phase Focusing Based IH DTL for Heavy Ion Application cavity, focusing, operation, linac 162
 
  • S. Lauber, K. Aulenbacher, W.A. Barth, M. Basten, C. Burandt, F.D. Dziuba, P. Forck, V. Gettmann, T. Kürzeder, J. List, M. Miski-Oglu, A. Rubin, S. Yaramyshev
    GSI, Darmstadt, Germany
  • K. Aulenbacher, W.A. Barth, M. Basten, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, S. Yaramyshev
    HIM, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba, S. Lauber, J. List
    KPH, Mainz, Germany
  • M. Droba, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • H. Podlech
    HFHF, Frankfurt am Main, Germany
 
  The con­tin­u­ous wave (CW) op­er­ated HElmholtz LIn­ear AC­cel­er­a­tor (HE­LIAC) is going to reach the next mile­stone with the com­mis­sion­ing of the su­per­con­duct­ing (SC) Ad­vanced Demon­stra­tor cry­omod­ule, com­pris­ing four SC Cross­bar H-mode (CH) cav­i­ties and SC steerer mag­nets. In par­al­lel with the com­mis­sion­ing of the SC main ac­cel­er­a­tor, the nor­mal con­duct­ing in­jec­tor con­sist­ing of an ECR ion source, a RFQ and two In­ter­dig­i­tal H-mode (IH) cav­i­ties will be built based on an Al­ter­nat­ing Phase Fo­cus­ing (APF) beam dy­nam­ics scheme. Both IH cav­i­ties will pro­vide a beam en­ergy gain from 300 keV/u to 1400 keV/u with a max­i­mum mass to charge ratio of 6, re­quir­ing only one ex­ter­nal quadru­pole triplet and beam steerer el­e­ments be­tween them. The APF con­cept al­lows sta­ble and ef­fec­tive beam trans­port with trans­verse and lon­gi­tu­di­nal fo­cus­ing, en­abling an ef­fi­cient and com­pact de­sign. Due to the strin­gent re­quire­ments of the APF con­cept on the volt­age dis­tri­b­u­tion and the CW op­er­a­tion, op­ti­miza­tion of each cav­ity in terms of RF, me­chan­i­cal and ther­mal prop­er­ties is cru­cial for suc­cess­ful op­er­a­tion of the HE­LIAC in­jec­tor. The cur­rent lay­out of the APF based and CW op­er­ated in­jec­tor will be pre­sented.  
slides icon Slides TH3C2 [1.603 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH3C2  
About • Received ※ 21 June 2022 — Revised ※ 04 July 2022 — Accepted ※ 10 August 2022 — Issue date ※ 19 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH3C3 Recent UNILAC Upgrade Activities operation, rfq, quadrupole, linac 166
 
  • U. Scheeler, W.A. Barth, M. Miski-Oglu, H. Vormann, M. Vossberg, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, M. Miski-Oglu, S. Yaramyshev
    HIM, Mainz, Germany
  • W.A. Barth
    KPH, Mainz, Germany
 
  The GSI UNI­LAC is the sec­tion of the GSI ac­cel­er­a­tor fa­cil­ity that has been in op­er­a­tion the longest. UNI­LAC is able to ac­cel­er­ate ions from hy­dro­gen to ura-nium up to 20 MeV (p+) and 13 MeV/u (ura­nium). The main focus of the re­cent up­grade mea­sures is to meet the FAIR re­quire­ments and to pro­vide re­li­able and long term beam op­er­a­tion con­di­tions. Be­sides post strip­per up­grade and up­grade of the UNI­LAC con­trols, a par­tic­u­lar at­ten-tion is paid to im­prove the per­for­mance of the High Cur­rent In­jec­tor (HSI) [1-7] and to in­ten­sify spare part man­age­ment for the age­ing ac­cel­er­a­tor. In order to en-sure op­er­a­tional re­li­a­bil­ity, the main focus lies on ex­ten-sive spare part man­age­ment and re­place­ment of out­dated equip­ment. Mod­i­fied beam dy­nam­ics de­sign for the fron­tend sys­tem and the use of ad­vanced tech­nolo­gies are needed to im­prove the UNI­LAC per­for­mance. Among other things, a mod­i­fied Low and Medium En­ergy Beam Trans­port sec­tion de­sign for the HSI and in­stal­la­tion of re­li­able (non-de­struc­tive) high in­ten­sity beam di­ag­nos-tics de­vices are in progress. This paper ad­dresses the sta­tus of cur­rent de­vel­op­ment ef­forts and spe­cific plans for the UNI­LAC up­grade.  
slides icon Slides TH3C3 [1.595 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH3C3  
About • Received ※ 20 June 2022 — Revised ※ 28 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH4C3 High Intensity Proton Beams at GSI (Heavy Ion) UNILAC proton, operation, linac, ion-source 170
 
  • W.A. Barth, M. Miski-Oglu, U. Scheeler, H. Vormann, M. Vossberg, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, M. Miski-Oglu
    HIM, Mainz, Germany
 
  A sig­nif­i­cant part of the ex­per­i­men­tal pro­gram at FAIR is ded­i­cated to pbar physics re­quir­ing a high num­ber of cooled pbars per hour. The pri­mary pro­ton beam has to be pro­vided by a 70 MeV pro­ton linac fol­lowed by two syn­chro­trons. The new FAIR pro­ton linac will de­liver a pulsed high in­ten­sity pro­ton beam of up to 35 mA of 36 µs du­ra­tion at a rep­e­ti­tion rate of 4 Hz. The GSI heavy ion linac (UNI­LAC) is able to de­liver in­tense heavy ion beam for in­jec­tion into SIS18, but it is not suit­able for FAIR rel­e­vant pro­ton beam op­er­a­tion. In an ad­vanced ma­chine in­ves­ti­ga­tion pro­gram it could be shown, that the UNI­LAC is able to pro­vide for suf­fi­cient high in­ten­si­ties of CH3-beam, cracked (and stripped) in a su­per­sonic ni­tro­gen gas jet into pro­tons and car­bon ions. This new op­er­a­tional ap­proach re­sults in up to 3 mA of pro­ton in­ten­sity at a max­i­mum beam en­ergy of 20 MeV, 100 µs pulse du­ra­tion and a rep. rate of 4 Hz. For some time now, UNI­LAC pro­ton beam op­er­a­tion with higher in­ten­si­ties has been of­fered as stan­dard for users. Re­cent linac beam mea­sure­ments will be pre­sented, show­ing that the UNI­LAC is able to bridge the time until the FAIR-pro­ton linac de­liv­ers high-in­ten­sity pro­ton beams.  
slides icon Slides TH4C3 [3.539 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2022-TH4C3  
About • Received ※ 11 June 2022 — Revised ※ 28 June 2022 — Accepted ※ 10 August 2022 — Issue date ※ 29 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)